Cho tam giác ABC có diện tích 24cm2 cạnh AB = 9cm, AC = 12cm. Kéo dài AB về phía B đoạn BM = 3cm, kéo dài AC về phía C đoạn CN = 3cm. Nối M với N. Tính diện tích tam giác AMN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn AM dài:
9 + 3 = 12 (cm)
Đoạn AN dài:
12 + 3 = 15 (cm)
Diện tích hình tam giác AMN là:
15 x 12 : 2 = 90 (cm2)
Đáp số: 90 cm2
Không chắc đâu nha
Xét tg ABC và tg BCM có chung đường cao từ C->AM nên
\(\frac{S_{BCM}}{S_{ABC}}=\frac{BM}{AB}=\frac{3}{9}=\frac{1}{3}\Rightarrow S_{BCM}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{ACM}=S_{ABC}+S_{BCM}=S_{ABC}+\frac{S_{ABC}}{3}=\frac{4xS_{ABC}}{3}\)
Xét tg ACM và tg CMN có chung đường cao từ M->AN nên
\(\frac{S_{CMN}}{S_{ACM}}=\frac{CN}{AC}=\frac{3}{12}=\frac{1}{4}\Rightarrow S_{CMN}=\frac{S_{ACM}}{4}=\frac{\frac{4xS_{ABC}}{3}}{4}=\frac{S_{ABC}}{3}\)
\(\Rightarrow S_{AMN}=S_{ABC}+S_{BCM}+S_{CMN}=S_{ABC}+\frac{S_{ABC}}{3}+\frac{S_{ABC}}{3}=\frac{5xS_{ABC}}{3}=\frac{5x15}{3}=25cm^2\)
\(AM=AB+BM=13\left(cm\right)\)
\(AN=AC+CN=16\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)
\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)
Chiều cao của tam giác ANM là :
12 + 3 = 15 ( cm )
Độ dài đáy AM là :
9 + 3 = 12 ( cm )
Diện tích tam giác AMN là :
\(\frac{1}{2}\)x 15 x 12 = 90 ( cm\(^2\))
Đáp số : 90 cm\(^2\)