Cho phương trình x2 +( m-1)x - m = 0 (5)
a/ Chứng tỏ rằng phương trình (5) luôn có nghiệm với mọi giá trị của m ?
b/ Gọi x1 và x2 là nghiệm của phương trình (5) Chứng minh hệ thức
x1^2 +x2^2 -2.x1.x2 -x1^2.x2^2 =2m+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)
= m2 - 8m + 16 = ( m - 4 )2
Ta có: ( m - 4 )2 \(\ge\) 0
=> Pt luôn có nghiệm
b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9
= x12 + x22 + 2x1x2 - 2x1x2 - 9
= (x1 + x2)2 - 2x1x2 - 9
= (-m)2 - 2(2m - 4) - 9
= m2 - 4m + 8 - 9
= m2 - 4m - 1 = m2 - 4m + 4 - 5
= (m - 2)2 - 5
Xét (m - 2)2 \(\ge\) 0
=> (m - 2)2 - 5 \(\ge\) -5
Dấu " =" xảy ra khi m - 2 = 0
<=> m = 2
\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm
Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)
\(A=m^2-2\left(2m-4\right)-9\)
\(A=m^2-4m-1\)
\(A=\left(m-2\right)^2-5\ge-5\)
\(\Rightarrow A_{min}=-5\) khi \(m=-2\)
Cho phương trình: x2 - (2m - 1)x - m = 0
Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)
Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m
Điều kiện: -1 < x < 1.
Với điều kiện trên, phương trình đã cho tương đương: x = 5- 2m
Để phương trình đã cho có nghiệm thì: -1 < 5- 2m < 1
⇔ - 6 < - 2 m < - 4 ⇔ 3 > m > 2 .
\(Q=2017x_1-2016x_1x_2+2017x_2-2018x_1x_2\)
\(=2017\left(x_1+x_2\right)-4034x_1x_2\)
\(=2017\left(2m+2\right)-4034\left(m-3\right)\)
=4034m+4034-4034m+12102
=16136
a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)
\(=m^2-10m+25+4m-24\)
\(=m^2-6m+1=\left(m-3\right)^2-8\)
Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)
Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)
Ta có: \(x_1x_2=-m+6\)
\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)
\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)
\(\Leftrightarrow6m^2-136m+756=0\)
hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)
b: \(x_1+x_2+x_1x_2-11=0\)
\(\Leftrightarrow m-5-m+6-11=0\)
=>-12=0(vô lý)
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)