K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Ta có: D= \(|x-5|+|10-x|+15\)

,<=>D\(\le\).\(|x-5+10-x|+15\)

<=>D\(\le\)5+15

<=>D\(\le\)20

Vậy Min(D)=20 <=> x=10

10 tháng 3 2017

vẫn thế bạn ơi..., đổi |x-5| thành |5-x| rồi làm như trước

3 tháng 1 2017

Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)

Ta có :   \(\left|x+\frac{-2}{3}\right|\ge0\)

         \(3.\left|x+\frac{-2}{3}\right|\ge0\)

\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow Min_A=\frac{5}{2}\)

\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)

\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)

\(\Leftrightarrow x+\frac{-2}{5}=0\)

\(\Leftrightarrow x=\frac{2}{5}\)

26 tháng 3 2022

`Answer:`

1. 

Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)

Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)

2. 

Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

a: Để A là số hữu tỉ dương thì \(\dfrac{x-5}{9-x}>0\)

\(\Leftrightarrow\dfrac{x-5}{x-9}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x-9< 0\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: Để A không là số hữu tỉ dương cũng không là số hữu tỉ âm thì x-5=0

hay x=5

c: Để A là số nguyên thì \(x-5⋮9-x\)

\(\Leftrightarrow4⋮x-9\)

\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{10;8;11;7;13;5\right\}\)

Thanks bạn nha!

21 tháng 9 2016

\(|x+\frac{3}{4}|\ge0\Rightarrow\frac{1}{2}+|x+\frac{3}{4}|\ge\frac{1}{2}\).Vậy GTNN của A là\(\frac{1}{2}\)khi :

\(|x+\frac{3}{4}|=0\Rightarrow x+\frac{3}{4}=0\Rightarrow x=\frac{-3}{4}\)