K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2023

Gọi `M(x;3/2x+5/2)`

Ta có:`|\vec{MA}-2\vec{MB}|`

`=|(4-x;7-3/2x-5/2)-2(2-x;1-3/2x-5/2)|`

`=|(x;3/2x+17/2)|`

`=\sqrt{x^2+(3/2x+17/2)^2}`

`=\sqrt{x^2+9/4x^2+51/2x+289/4}`

`=\sqrt{13/4x^2+51/2x+289/4}`

`=\sqrt{(\sqrt{13}/2 x+[51\sqrt{13}]/26)^2+289/13} >= [17\sqrt{13}]/13`

Dấu "`=`" xảy ra `<=>\sqrt{13}/2x+[51\sqrt{13}]/26=0<=>x=-51/13`

   `=>M(-51/13;-44/13)`

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

30 tháng 11 2017

Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .

Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.

Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0

Thay (1) vào phương trình của (C) ta được x ' 2   +   y ' 2   −   2 x ′   +   4 y ′   −   4   =   0 .

Từ đó suy ra phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9 .

Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,

từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9

26 tháng 2 2017

Đáp án B

Do điểm M nằm trên trục hoành nên M( x; 0)

Khoảng cách từ M đến mỗi đường thẳng lần lượt là:

Theo bài ra ta có:  d( M; a) = d( M; b) nên

Do đó:

Sut ra 3x- 6= -3x-3 nên x= 1/2

Vậy điểm M ( 1/2; 0)

NV
12 tháng 12 2020

Cách 1:

Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)

Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)

\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)

\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)

\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)

Dấu "=" xảy ra khi và chỉ khi:

\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)

\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

NV
12 tháng 12 2020

Cách 2:

Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)

Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:

\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)

Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)

\(\Rightarrow C\left(2;2\right)\)

Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)

Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)

\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD

\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

11 tháng 7 2019

Chọn C

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

18 tháng 1 2017

23 tháng 5 2020

\(\overrightarrow{n_{d1}}=\left(1;2\right)\) ; \(\overrightarrow{n_{d2}}=\left(3;m\right)\)

Ta có: cos(d1;d2) = \(\left|cos(\overrightarrow{n_{d1};}\overrightarrow{n_{d2}})\right|\) = \(\frac{\sqrt{2}}{2}\)

=> \(\frac{3+2m}{\sqrt{\left(3+m^2\right)5}}\) = \(\frac{\sqrt{2}}{2}\) ⇔ 2(3 + 2m) = \(\sqrt{10\left(3+m^2\right)}\)

=> ĐK: 3 + 2m > 0 ⇔ m > \(\frac{-3}{2}\)