cho tam giác ABC vuông tại A biết AB=3cm , AC=4cm, I là trung điểm của BC. Trên tia đối của tia IA lấy điểm M sao cho IA=IM.
a,tính độ dài đoạn AI
b,cm tứ giác ABMC là hình chữ nhật.
c,gọi D là điểm đối xứng của B qua A. tứ giác AMCD là hình gì? vì sao?
d,gọi G là giao điểm của DM và BC .cm rằng DM=3GM
a) \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\) (theo định lí Pythagore trong tam giác \(ABC\) vuông tại \(A\))
\(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\).
b) Tứ giác \(ABMC\) có hai đường chéo \(AM,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABMC\) là hình bình hành.
Mà có \(\widehat{BAC}=90^o\) do đó \(ABMC\) là hình chữ nhật.
c) Tứ giác \(AMCD\) có \(AD=AB=AM,AD//CM\) suy ra \(AMCD\) là hình bình hành.
d) Gọi \(K\) là giao điểm của \(DM\) và \(AC\).
Do \(AMCD\) là hình bình hành nên hai đường chéo \(DM,AC\) cắt nhau tại trung điểm \(K\) của mỗi đường.
Xét tam giác \(ACM\): hai đường trung tuyến \(CI,MK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm tam giác \(ACM\) suy ra \(MG=\dfrac{2}{3}MK=\dfrac{2}{3}.\dfrac{1}{2}MD=\dfrac{1}{3}MD\)
\(\Leftrightarrow DM=3GM\).