Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI và ΔKCI có
IA=IK
\(\widehat{AIB}=\widehat{KIC}\)
IB=IC
Do đó: ΔABI=ΔKCI
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
xét tam giác ABC có góc A+B+C=180
100+50+C=180
C=180-100-50=30
xét tam giác ABI và Dci
IA=ID (gt)
IB=IC (gt)
AIB=CID (đ.đỉnh)
Vậy tam giác ABI=DCI (c.g.c)
Vậy góc ABI=DCI (2gocs tưng ứng)
Xét tam giác MIB và NIC
B =ICD (cmt)
IB=IC (gt)
MIB=NIC (đ.đỉnh)
Vậy tan giác MIB=NIC (g.c.g)
vậy IM=IN (2 cạnh tương ứng)
vậy I là trung điểm của MN
a: Xét ΔIAB và ΔIMC có
IA=IM
góc AIB=góc MIC
IB=IC
Do đó: ΔIAB=ΔIMC
b: ΔIAB=ΔIMC
=>góc IAB=góc IMC
=>AB//CM
c: Xét tứ giác ABMC có
I là trung điểm chung của AM và BC
góc BAC=90 độ
Do đó: ABMC là hình chữ nhật
=>ΔMBC vuông tại M