K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0
27 tháng 4 2018

a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)

                    thay x=2 vào biểu thức ta có m=-143(tm)

12 tháng 6 2015

a) Tự giải

b) xét denta, đặt điều kiện của m

xét viet x1+x2 vs x1.x2

từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11 

thế viet vao giải, nhơ so sánh đk

Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)

\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)

\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)

\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)

\(=16m^2-8m+4-16m^2+32m-12\)

\(=24m-8\)

Để phương trình có hai nghiệm phân biệt thì

\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)

8 tháng 2 2021

Không hiểu câu hỏi lắm :vvv

26 tháng 5 2016

\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(1\right)\)

\(\text{ĐKXĐ}:x^3+1\ge0\Leftrightarrow x\ge-1\)

(*) <=> 4(x2 + 2)2 = 25( x3 + 1 ) 

<=> 4( x4 + 4x2 + 4 ) = 25(x3 + 1) 

<=> 4x4 + 16x2 + 16 = 25x3 + 25 

<=> 4x4 - 25x3 + 16x2 - 9 = 0 

<=> 4x4 - 5x3 - 20x3 + 3x2 + 25x2 - 12x2 + 15x - 15x - 9 = 0 

<=> 4x4 - 5x3 + 3x2 - 20x3 + 25x2 - 15x - 12x2 + 15x - 9 = 0 

<=> x2( 4x2 - 5x + 3 ) - 5x( 4x2 - 5x + 3 ) - 3(4x2 - 5x + 3 ) = 0 

<=> ( x2 - 5x - 3)( 4x2 - 5x + 3 ) = 0 

tới đây delta hoặc vi-ét thì tùy

\(\Leftrightarrow x=\frac{5+\sqrt{37}}{2}\)

\(\Leftrightarrow x=\frac{5-\sqrt{37}}{2}\)

26 tháng 5 2016

sửa (*) thành (1) nhé

câu nào đọc dc thì mọi người giải giúp nhéBài 13. Cho phương trình: x2 – 2mx – 4m – 11 = 0; (x: là ẩn, m: là tham số)a/ Chứng tỏ phương trình luôn có hai nghiệm phân biệt với mọi m.b/ Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn: 51 11221  xxxxBµi 14. Cho ph­¬ng tr×nh bËc hai Èn x, m lµ tham sè : x m x m2     2( 3) 2 7 0 (1)a/ Chøng tá r»ng ph­¬ng tr×nh (1) lu«n cã nghiÖm víi mäi...
Đọc tiếp

câu nào đọc dc thì mọi người giải giúp nhé

Bài 13. Cho phương trình: x2 – 2mx – 4m – 11 = 0; (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có hai nghiệm phân biệt với mọi m.
b/ Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn: 5
1 1
1
2
2
1
 


 x
x
x
x
Bµi 14. Cho ph­¬ng tr×nh bËc hai Èn x, m lµ tham sè : x m x m2     2( 3) 2 7 0 (1)
a/ Chøng tá r»ng ph­¬ng tr×nh (1) lu«n cã nghiÖm víi mäi m.
b/ Gäi hai nghiÖm cña ph­¬ng tr×nh (1) lµ x x1 2; . H·y t×m m ®Ó
1 2
1 1
1 1
m
x x
 
 
Bài 15. Cho phương trình: x2 – (m – 5)x + m – 7 = 0. (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có nghiệm với mọi m.
b/ Tìm giá trị của m để phương trình có hai nghiệm cùng dương.
Bài 16. Cho phương trình: (m – 1)x2 – 5x + 2 = 0. (x: là ẩn, m: là tham số)
Định giá trị của m để phương trình có hai nghiệm cùng âm.
Bµi 17. Cho ph­¬ng tr×nh (Èn x) : 2x2 + mx + m - 3 = 0 (1)
1) Chøng minh r»ng ph­¬ng tr×nh (1) lu«n cã hai nghiÖm ph©n biÖt víi mäi gi¸ trÞ cña m.
2) T×m c¸c gi¸ trÞ cña m ®Ó ph­¬ng tr×nh (1) cã hai nghiÖm tr¸i dÊu vµ nghiÖm ©m cã gi¸ trÞ tuyÖt ®èi lín h¬n
nghiÖm d­¬ng.
Bài 18. Cho phương trình: x2 – (m – 2)x + m – 4 = 0. (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có nghiệm với mọi m.
b/ Tìm giá trị của m để phương trình có hai nhiệm đối nhau.
Bµi 19. Cho ph­¬ng tr×nh bËc hai x m x m2 2    2(2 1) 3 4 0 (x lµ Èn) (1)
a/ Chøng minh r»ng ph­¬ng tr×nh (1) lu«n cã hai nghiÖm ph©n biÖt víi mäi m.
b/ Gäi x1; x2 lµ hai nghiÖm ph©n biÖt cña ph­¬ng tr×nh (1). H·y t×m m ®Ó x x1 2  2 2
 

0

\(\Delta=\left(2m-1\right)^2-4\cdot\left(m+1\right)\cdot m\)

\(=4m^2-4m+4-4m^2-4m\)

\(=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m+1\ne0\\-8m+4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-8m>-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

28 tháng 5 2015

\(\Delta\)' = (m +2)2  - (6m +1) = m2 - 2m + 3 = m2 - 2m + 1 + 2 = ( m - 1)2 + 2 > 0 với mọi m

=> Pt đã cho luôn có 2 nghiệm phân biệt. Gọi là x1; x2

Theo hệ thức Vi - ét ta có: x1 + x2 = 2(m+2) ; x1x2 = 6m +1

Để x1 > 2; x2 > 2 <=> x1 - 2 > 0;  x2 - 2 > 0

<=> (x1 - 2 ) + (x2 - 2)  > 0 và  (x1 - 2).(x2 - 2)  > 0

+)  (x1 - 2 ) + (x2 - 2)  > 0  <=> (x1 + x2 ) - 4   > 0 <=> 2.(m +2) - 4 > 0 <=> 2m > 0 <=> m > 0         (*)

+)  (x1 - 2).(x2 - 2)  > 0 <=> x1x2 - 2(x1 + x2 ) + 4   > 0 <=> 6m + 1 - 4(m +2) + 4 > 0

<=> 2m - 3 > 0 <=> m > 3/2              (**)

Từ (*)(**) => Với m > 3/2 thì PT đã cho có 2 nghiệm phân biệt > 2

11 tháng 8 2017

giúp em giải với 

Cho phương trình: \(8x^2-8x+m^2+1=0\)(*) (x là ẩn số). Định m để phương trình (*) có hai nghiệm \(x_1,x_2\)thỏa điều kiện: \(x_{1^4-x_2^4=x_1^3-x_2^3}\)

23 tháng 3 2022

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.