Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(n-2\right)^2+12>0\) ; \(\forall n\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi n
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=n-2\\x_1x_2=-3\end{matrix}\right.\)
\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)
\(\Rightarrow x_1^2+x_2^2-2x_2\sqrt{x_1^2+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)
\(\Rightarrow x_1+x_2=0\Rightarrow n-2=0\Rightarrow n=2\)
Thử lại với \(n=2\) thấy đúng. Vậy...
Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)
Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)
\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)
Dấu "=" xảy ra <=> n=2
a: Δ=(2m+2)^2-4(m-2)
=4m^2+8m+4-4m+8
=4m^2+4m+12
=(2m+1)^2+11>=11>0
=>Phương trình luôn cóhai nghiệm phân biệt
b: x1^2+2(m+1)x2-5m+2
=x1^2+x2(x1+x2)-4m-m+2
=x1^2+x1x2+x2^2-5m+2
=(x1+x2)^2-2x1x2+x1x2-5m+2
=(2m+2)^2-(m-2)-5m+2
=4m^2+8m+4-m+2-5m+2
=4m^2+2m+8
=4(m^2+1/2m+2)
=4(m^2+2*m*1/4+1/16+31/16)
=4(m+1/4)^2+31/4>=31/4
Dấu = xảy ra khi m=-1/4
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\left(1\right)\)
\(\text{ĐKXĐ}:x^3+1\ge0\Leftrightarrow x\ge-1\)
(*) <=> 4(x2 + 2)2 = 25( x3 + 1 )
<=> 4( x4 + 4x2 + 4 ) = 25(x3 + 1)
<=> 4x4 + 16x2 + 16 = 25x3 + 25
<=> 4x4 - 25x3 + 16x2 - 9 = 0
<=> 4x4 - 5x3 - 20x3 + 3x2 + 25x2 - 12x2 + 15x - 15x - 9 = 0
<=> 4x4 - 5x3 + 3x2 - 20x3 + 25x2 - 15x - 12x2 + 15x - 9 = 0
<=> x2( 4x2 - 5x + 3 ) - 5x( 4x2 - 5x + 3 ) - 3(4x2 - 5x + 3 ) = 0
<=> ( x2 - 5x - 3)( 4x2 - 5x + 3 ) = 0
tới đây delta hoặc vi-ét thì tùy
\(\Leftrightarrow x=\frac{5+\sqrt{37}}{2}\)
\(\Leftrightarrow x=\frac{5-\sqrt{37}}{2}\)
sửa (*) thành (1) nhé