Biết \(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)
Chứng minh có một phân thức ở vế trái bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)
Theo giả thiết : \(A+B+C=1\)
Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)
\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)
\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)
\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)
\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)
\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)
Có 3 khả năng xảy ra :
TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)
TH2 :
\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)
TH3:
\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)
và \(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)
\(a,b,c\ne0\)
\(\dfrac{ac+bc-c^2}{abc}-\dfrac{ab+ac-a^2}{abc}-\dfrac{ab+bc-b^2}{abc}=0\)
\(\Leftrightarrow\dfrac{ac+bc-c^2-ab-ac+a^2-ab-bc+b^2}{abc}=0\)
\(\Leftrightarrow a^2+b^2-c^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)=0\)
\(\Leftrightarrow\left(b+c-a\right)\left(a+c-b\right)=0\) \(\Rightarrow\left[{}\begin{matrix}b+c-a=0\\a+c-b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{b+c-a}{bc}=0\\\dfrac{a+c-b}{ac}=0\end{matrix}\right.\) (đpcm)
ta có :
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)
\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)
Vậy ta có đpcm
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)
=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)
=> a2 + b2 - 2ab - c2 = 0
=> (a - b)2 - c2 = 0
<=> (a - b + c)(a - b - c) = 0
<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)
Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)
Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)
=> đpcm
theo bất đẳng thức côsi ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)
\(\frac{a}{ab}+\frac{b}{ab}-\frac{c}{ab}-\frac{b}{bc}-\frac{c}{cb}+\frac{a}{bc}-\frac{a}{ac}-\frac{c}{ac}+\frac{b}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}-\frac{c}{ab}-\frac{1}{c}-\frac{1}{b}+\frac{a}{bc}-\frac{1}{c}-\frac{1}{a}+\frac{b}{ac}\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}-\frac{2}{c}-\frac{c}{ab}\)
\(\Rightarrow\frac{a^2}{abc}+\frac{b^2}{abc}-\frac{c^2}{abc}-\frac{2ab}{abc}\)
\(\Rightarrow\frac{a^2-2ab+b^2-c^2}{abc}\)
\(\Rightarrow\frac{\left(a-b\right)^2-c^2}{abc}\Rightarrow\frac{\left(a-b-c\right)\left(a-b+c\right)}{abc}\)
Đến đây mk tắc thông cảm nha