Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)
\(\frac{a}{ab}+\frac{b}{ab}-\frac{c}{ab}-\frac{b}{bc}-\frac{c}{cb}+\frac{a}{bc}-\frac{a}{ac}-\frac{c}{ac}+\frac{b}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}-\frac{c}{ab}-\frac{1}{c}-\frac{1}{b}+\frac{a}{bc}-\frac{1}{c}-\frac{1}{a}+\frac{b}{ac}\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}-\frac{2}{c}-\frac{c}{ab}\)
\(\Rightarrow\frac{a^2}{abc}+\frac{b^2}{abc}-\frac{c^2}{abc}-\frac{2ab}{abc}\)
\(\Rightarrow\frac{a^2-2ab+b^2-c^2}{abc}\)
\(\Rightarrow\frac{\left(a-b\right)^2-c^2}{abc}\Rightarrow\frac{\left(a-b-c\right)\left(a-b+c\right)}{abc}\)
Đến đây mk tắc thông cảm nha
b/ không mất tính tổng quát ta giả sử: a = b + c thì
\(\frac{a^2+b^2-c^2}{2ab}=\frac{b^2+2bc+c^2-c^2}{2\left(b+c\right)b}=\frac{2b^2+2bc}{2b^2+2bc}=1\)
Tương tự
\(\frac{c^2+a^2-b^2}{2ac}=\frac{2c^2+2ac}{2c^2+2ac}=1\)
\(\frac{b^2+c^2-a^2}{2bc}=\frac{-2bc}{2bc}=-1\)
Vậy trong ba số luôn có 2 số = 1 và 1 số = - 1
\(\frac{a^2+b^2-c^2}{2ab}+\frac{-a^2+b^2+c^2}{2bc}+\frac{a^2-b^2+c^2}{2ca}=1\)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-2abc-a^3-b^3-c^3=0\)
\(\Leftrightarrow\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)=0\)
\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\)
Vậy trong 3 số có 1 số bẳng tổng 2 số kia
ta có :
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)
\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)
Vậy ta có đpcm
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)
=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)
=> a2 + b2 - 2ab - c2 = 0
=> (a - b)2 - c2 = 0
<=> (a - b + c)(a - b - c) = 0
<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)
Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)
Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)
=> đpcm
\(a,b,c\ne0\)
\(\dfrac{ac+bc-c^2}{abc}-\dfrac{ab+ac-a^2}{abc}-\dfrac{ab+bc-b^2}{abc}=0\)
\(\Leftrightarrow\dfrac{ac+bc-c^2-ab-ac+a^2-ab-bc+b^2}{abc}=0\)
\(\Leftrightarrow a^2+b^2-c^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)=0\)
\(\Leftrightarrow\left(b+c-a\right)\left(a+c-b\right)=0\) \(\Rightarrow\left[{}\begin{matrix}b+c-a=0\\a+c-b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{b+c-a}{bc}=0\\\dfrac{a+c-b}{ac}=0\end{matrix}\right.\) (đpcm)