tìm STN a thỏa mãn \(\frac{3}{a}-\frac{a}{3}=\frac{2+3}{2x3}\)
ai trả lời đúng có trình bày cách giải rõ ràng = 3tk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a )
ta kiếm dc 2 kết quả 0 hoặc 2003
câu B)
KQ là 1
ai tick mik mik tick lại cko
a,Vì x là mẫu nên khi cộng 2 phân số đó lại thì phải quy đồng lên để y lên được được 6
=> x =\(2\)
=> y = \(\left(-2\right)\)
b,tương tự câu a tự giải nha !
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)
\(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)
\(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)
\(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)
Vay \(\frac{A}{B}=\frac{1}{2009}\)
\(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\)
\(\Leftrightarrow x=\frac{\frac{10}{y}+\frac{3}{2}}{\frac{y+2}{2y}}\)
\(\Leftrightarrow x=\frac{20+3y}{y+2}\)
\(\Leftrightarrow x=\frac{3\left(y+2\right)+14}{y+2}\)
\(\Leftrightarrow x=3+\frac{14}{y+2}\)
Để x nguyên thì \(y\inƯ\left(14\right)\)
Tiếp tự làm nhé
Ta có : \(\frac{3}{a}-\frac{a}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{3}{a}=\frac{5}{6}-\frac{a}{3}=\frac{5-2a}{6}\)
\(\Leftrightarrow5a-2a^2=18\)