cho 2 số tự nhiên x và 2x đều có tổng các chữ số là y . chứng minh x chia hết cho 9 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x và x có tổng các chữ số cùng bằng y <=> x=9k
Khi đó: x=9 ; 2x=9k.2 <=>x=9;2x=18k
Vậy (1+8).k=9k <=> 1k+8k=9k <=> 9k=9k (đpcm)
Do đó x=9k hay x chia hết cho 9 thì 2x có tổng các chữ số bằng x và bằng y....
Cho hai số tự nhiên x và 2x đều có tổng các chữ số tận cùng là 9. Chứng minh rằng: x chia hết cho 9.
Vì tổng các chữ số có cùng dư khi chia cho 9 và a; 2a có tổng các chữ số giống nhau nên a; 2a có cùng dư chia cho 9.
Đặt a = 9q + r
2a =9k + r
(q; k; r thuộc N*; k > q)
=> 2a - a = a
=> (9k + r) - (9q + r)
=> 9k + r - 9q - r
=> 9(k - q) chia hết cho 9.
=> a chia hết cho 9.
do 2 số tự nhiên x,2x đều có tổng chữ số là y=> 2x,x chia 9 đều có số dư là y
=>2x-x=x chia 9 có số dư là y-y=0
=>y chia hết cho 9