Gọi P là trung điểm cạnh BC của tam giác ABC và BE, CF là hai đường cao. Đường thẳng qua A, vuông góc với PE, cắt đường thẳng BE tại N. Gọi K và G lần lượt là trung điểm của BM và CN. Gọi H là giao điểm của đường thẳng KF là GE. CMR: AH vuong goc EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề còn thiếu thì phải, điểm M ở đâu ?
Bổ sung: "Đường thẳng qua A vuông góc với PF cắt tia CF tại M ..."
Giải: Gọi D là trực tâm tam giác ABC. PE cắt AN tại Q
Dễ thấy: ^ADE = ^ACB (Cùng phụ ^DAC) (1)
\(\Delta\)BEC vuông tại E có trung tuyến EP => ^PEC = ^ECP = ^ACB
Mà ^PEC = ^ AEQ = ^ANE (Do ^AEQ và ^ANE cùng phụ ^QEN) => ^ANE = ^ACB (2)
Từ (1) và (2) => ^ADE = ^ANE => AE là phân giác ^DAN
Xét \(\Delta\)ADN có: phân giác AE; AE vuông góc DN (tại E) => \(\Delta\)ADN cân tại A
=> E là trung điểm DN => GE là đường trung bình \(\Delta\)CDN => GE // CD
Lại có: CD vuông góc AB => GE vuông góc AB hay EH vuông góc AF
Tương tự ta c/m được FH vuông góc với AE
Trong \(\Delta\)AEF có: EH vuông góc AF và FH vuông góc AE
Nên H là trực tâm \(\Delta\)AEF => AH vuông góc với EF (ĐPCM).
Từ chỗ ^ADE = ^ANE suy ra tam giác DAN cân tại A luôn nhé. Vừa nãy mình nhìn nhầm :(
a) Ta có:
\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\) ⇒ \(BH\text{//}KC\)
\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\) ⇒ \(CH\text{//}BK\)
\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)
⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC
⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)
Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)
⇒ \(IM\) là đường trung bình của \(\Delta AHK\)
⇒ \(IM=\dfrac{1}{2}AH\) \(\left(ĐPCM\right)\)
c)
Ta có:
\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)
\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)
\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)
⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)
⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\) \(\left(ĐPCM\right)\)