K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

A B C P E F N G M K H D Q

Đề còn thiếu thì phải, điểm M ở đâu ?

Bổ sung: "Đường thẳng qua A vuông góc với PF cắt tia CF tại M ..."

Giải: Gọi D là trực tâm tam giác ABC. PE cắt AN tại Q

Dễ thấy: ^ADE = ^ACB (Cùng phụ ^DAC) (1)

\(\Delta\)BEC vuông tại E có trung tuyến EP => ^PEC = ^ECP = ^ACB

Mà ^PEC = ^ AEQ = ^ANE (Do ^AEQ và ^ANE cùng phụ ^QEN) => ^ANE = ^ACB (2)

Từ (1) và (2) => ^ADE = ^ANE => AE là phân giác ^DAN 

Xét \(\Delta\)ADN có: phân giác AE; AE vuông góc DN (tại E) => \(\Delta\)ADN cân tại A

=> E là trung điểm DN => GE là đường trung bình \(\Delta\)CDN => GE // CD

Lại có: CD vuông góc AB => GE vuông góc AB hay EH vuông góc AF

Tương tự ta c/m được FH vuông góc với AE

Trong \(\Delta\)AEF có: EH vuông góc AF và FH vuông góc AE 

Nên H là trực tâm \(\Delta\)AEF => AH vuông góc với EF (ĐPCM).

1 tháng 9 2018

Từ chỗ ^ADE = ^ANE suy ra tam giác DAN cân tại A luôn nhé. Vừa nãy mình nhìn nhầm :(

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

16 tháng 3 2020

a, xét tam giác AIE và tam giác AIH có : AI chung

IE = IH (Gt)

^AIE = ^AIH = 90

=> tam giác AIE = tam giác AIH (2cgv)

=> AE = AH (đn)                                   (1)

xét tam giác AHK và tam giác AFK có : AK chung

HK = KF (gt)

^AKH = ^AKF = 90

=> tam giác AHK = tam giác AFK (2cgv)

=> AH = AF (đn) và (1)

=> AE = AF 

=> tam giác AEF cân tại A (đn)

b, xét tam giác ABE và tam giác ABH có : AB chung

AE = AH (câu a)

^EAB = ^HAB do tam giác AIE = tam giác AIH (câu a)

=> tam giác ABE = tam giác ABH (c-g-c)

=> ^AEB = ^AHB (đn) mà ^AHB = 90

=> ^AEB = 90

=> AE _|_ BE (đn)

c,  xét tam giác KFC và tam giác KHC có : KC chung

HK = KF (gt)

^HKC = ^FKC = 90

=> tam giác KFC =  tam giác HKC (2cgv)

=> CF = CH (đn)

d, xét tam giác AEM và tam giác AHM có : AM chung

AE = AH (câu a)

^EAM = ^HAM (câu b)

=> tam giác AEM = tam giác AHM (c-g-c)

=> ^AEM = ^AHM (đn)                       (2)

xét tam giác AHN và tam giác AFN có : AN chung

AH = HF (Câu a)

^HAN = ^FAN do tam giác HAK = tam giác FAK (Câu a)

=> tam giác AHN = tam giác AFN (c-g-c) 

=> ^AHN = ^AFN (đn)                      (3)

tam giác AEF cân tại A (câu a) => ^AEM = ^AFN (tc)         và (2)(3)

=> ^MHA = ^NHA mà HA nằm giữa HM và HN 

=> HA là pg của ^MHN (đn)

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs