CMR: \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}\) không là một số tự nhiên
Giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+.....+\frac{1}{101}\)
\(=\frac{1}{2+3}+\frac{1}{3+4}+\frac{1}{4+5}+....+\frac{1}{50+51}\)
Anh quên mất đoạn sau rồi , nhưng hình như đến đây kl là được rồi đấy
Gọi dãy số trên là : N
Ta có N là 1 số nguyên thì N phải nằm giữa 2 số thự nhiên liên tiếp
=> Ta cần chứng minh : \(0>N< 1\)
Ta có : N > 0 hiển nhiên
=> Điều cần chứng minh là : N < 1
Ta có công thức tổng quát :
\(\frac{1}{n}+\frac{1}{n+2}=\frac{n+2+n}{n\left(n+2\right)}=\frac{2+2n}{n\left(n+2\right)}=\frac{2\left(n+1\right)}{n\left(n+2\right)}\)
Giả sử : \(\frac{2\left(n+1\right)}{n\left(n+2\right)}< \frac{n}{n}< 1\)đúng
Ta được : \(\frac{2\left(n+1\right)}{n\left(n+2\right)}< \frac{n\left(n+2\right)}{n\left(n+2\right)}\Rightarrow2\left(n+1\right)< n\left(n+2\right)\Rightarrow2n+1< n^2+2n\)
Do \(n^2>1\Rightarrow2n+1< 2n+n^2\)=> \(N< 1\)
Vậy ta kl : \(0>N< 1\)
=> N ko phải là số tn
Quy đồng A ta có:
A = \(\frac{7.9.11...101+5.9.11...101+...+5.7.9...99}{5.7.9...101}\)
Nhận xét:
Các tích 7.9.11...101;....; 5.7.9...97.101 đều chia hết cho 101 nhưng 5.7.9....99 không chia hết cho 101 nên A có tử số không chia hết cho 101
Mà mẫu chia hết cho 101; 101 là số nguyên tố
=> Tử không chia hết cho mẫu
=> A là phân số
A=1/5.7 + 1/7.9 + ..... + 1/99.101
A=1/5 - 1/7 + 1/7 - 1/9 + ..... + 1/99 - 1/101
A=1/5 - 1/101 = 1/116
=> A không phải là số tự nhiên
\(B=4\cdot\left(-\frac{1}{2}\right)^3:\left(\frac{4}{5}\right)^0\cdot\frac{1}{2}-\frac{\frac{3}{5}-\frac{3}{9}+\frac{3}{13}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{13}}\)
\(=4\cdot\frac{-1}{8}:1\cdot\frac{1}{2}-\frac{3\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{13}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{13}\right)}\)
\(=-\frac{1}{4}-\frac{3}{7}=-\frac{19}{28}\)
Quy đồng phân số ta được \(A=\frac{7.9.11....101+5.9.11...101+...+5.7.9...99}{5.7.9....101}\)
Mà Tử số không chia hết cho 101 ( Vì các tích đầu đều chia hết cho 101 nhưng tích cuối cùng 5.7.9...99 không chia hết cho 101)
Mẫu số chia hết cho 101
=> Tử không chia hết cho Mẫu
=> A không là số tự nhiên