Cho x, y, z là các số \(\ne\) 0 và \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Chứng minh rằng: Hoặc x = y = z hoặc x2y2z2 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)
x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz
Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy
Nhân theo vế các đẳng thức trên ta đc:
(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2
=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0
=>(x-y)(y-z)(z-x)(x2y2z2-1)=0
=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0
=>x=y=z hoặc x2y2z2=1(đfcm)
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)
Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)
Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0
Vậy x = y = z hoặc x2y2z2 = 1
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)
\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)
\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x = -y hoặc y = -z hoặc z = -x
Không mất tổng quát giả sử x = -y, khi đó:
\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)
\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)
\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
Khi đó ta chứng minh được :
\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)
Mà \(x+y+z=0\)
\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)
Từ đó ta suy ra :
\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)
\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)
\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)
\(=xyz\)( ĐPCM )
Hên xui thôi