Cho tam giác ABC cân tại A có góc A bằng 20o. Vẽ tam giác đều DBC( D nằm trong tam giác ABC). Tia phân giác góc ABD cắt AC tại M. CMR
a) Tia ad là tia phân giác góc BAC
b) AM= BC
BÀI TẬP TẾT AI BIẾT MÀ RẢNH THÌ GIÚP MK VS MK TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo:
Bài 5
Vẽ hình, ghi GT, KL đúng 0,5đ
a. Chứng minh ΔADB = ΔADC (c - c - c) 1đ
Suy ra
Do đó: = 200 : 2 = 100
b. Ta có: ΔABC cân tại A, mà = 200 (gt) nên = (1800 - 200) : 2 = 800
ΔABC đều nên = 600
Tia BD nằm giữa hai tia BA và BC suy ra = 800 - 600 = 200
Tia BM là tia phân giác của góc ABD nên = 100
Xét ΔABM và ΔBAD ta có:
AB là cạnh chung
Vậy ΔABM = ΔBAD (g - c - g)
Suy ra AM = BD, mà BD = BC (gt) nên AM = BC
Bài 6:
Ta có \(8\left(x-2009\right)^2\) chẵn, \(25\) lẻ nên \(y^2\) lẻ
Mà \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)
Mà \(y\in \mathbb{N}\) nên \(y^2\in\left\{1;9;25\right\}\)
Với \(y^2=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\)
Với \(y^2=9\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\)
Với \(y^2=25\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow x-2009=0\Leftrightarrow x=2009\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(2009;5\right);\left(2009;-5\right)\)
http://d.violet.vn//uploads/resources/285/2783442/preview.swf
trang 73
a) Xét tam giác ADB và ADC có: AD chung
DB=DC(vì tam giác DBC đều)
AB=AC ( tam giác ABC cân tại A)
=> tam giác ADB=tam giác ADC (c.c.c)
=>\(\widehat{ADB}=\widehat{ADC}\)(2 góc tương ứng)
mà AD nằm giữa AB và AC
=>AD là tia p/g của góc BAC
b. Ta có: ΔABC cân tại A, mà = 200 (gt)
=> = (1800 - 200) : 2 = 800
ΔABC đều nên = 600
Tia BD nằm giữa hai tia BA và BC
=> = 800 - 600 = 200
Tia BM là tia phân giác của góc ABD
=> = 100
Xét ΔABM và ΔBAD ta có:
\(\widehat{ABM}=\widehat{DAB}=10^0\)
AB là cạnh chung
\(\widehat{BAM}=\widehat{ABD}=20^0\)
Vậy ΔABM = ΔBAD (g - c - g)
Suy ra AM = BD
mà BD = BC ( gt )
=> AM = BC
hình thì cậu tự vẽ còn bài làm thì ở dưới đây:
a) xét tam giác ADB và ADC có: AD chung
DB=DC(vì tam giác DBC đều)
AB=AC ( tam giác ABC cân tại A)
=> tam giác ADB=tam giác ADC (c.c.c)
=>\(\widehat{ADB}\)= \(\widehat{ADC}\)(2 góc tương ứng)
mà AD nằm giữa AB và AC =>AD là tia p/g của góc BAC
\(\widehat{BAD}=\widehat{CAD}\) mới đk chứ mà mk cx cảm ơn nhé câu b thì lm sao bạn ơi