K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2022

Trong Δ ABC có : H là trung điểm của BA và K là trung điểm của CA => HK =1/2 BC
                            * CMTT* => IH = 1/2 CA => IK = 1/2 AB
=> IH = 4 , IK= 3
Ta có : BA^2 + AC^2 = BC^2 ( Pitago)
         => BC = 10
=> HK = 5
=> CV : IH + IK + HK = 4 + 3 + 2 = 12

Tick minh với!!

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021

Bài 7:

Đặt a=A'B',b=A'C', c=B'C'

Theo đề,ta có: a/6=b/8=c/10

mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm

nên b/8=c/10=9/6=3/2

=>b=12cm; c=15cm

9 tháng 1 2023

a) Xét tam giác ABC có : BN = CN

                                        AP = PC

suy ra : NP là đường trung bình của tam giác ABC

suy ra : NP song song với AB và NP = AB/2

Xét tam giác ABC có : AM = BM ; BN = CN

suy ra MN là đường trung bình của tam giác ABC

suy ra MN song song với AC và MN = AC/2

Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )

                                    NP song song với MA ( NP song song AB )

suy ra : tứ giác AMNP là hbh

mà góc BAC = 90 độ

suy ra : hbh AMNP là hcn

b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )

suy ra : công thức tính diện tích hcn AMNP là :

    SAMNP = MN.NP

Ta có : MN = AC/2

mà AC = 8

suy ra : MN = 8/2 = 4cm

Ta có : NP = AB/2

mà AB = 6

suy ra : NP = 6/2 = 3cm

suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)

c) phần c hình như sai rồi á bạn

d) Ta có : AMNP là hcn ( đã C/M ở phần a )

Để hcn AMNP là hình vuông

khi và chỉ khi : MA = MN 

mà MA = BA/2

      MN = CA/2

suy ra : để hcn nhật AMNP là hv thì AB = AC

2 tháng 7 2019

#)Giải : 

(Bạn tự vẽ hình :P)

a) Xét ΔABC có:

IB = IA ( I là tia đối của AB)

BM = CM (M là tia đối của BC)

=> IM là đương trung bình của ΔABC

=> IM // AC và IM = 1/2AC

mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC

=> IM // AK và IM = AK

=> Tứ giác AIMK là hình bình hành có góc A = 90o

=> AIMK là hình chữ nhật

Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)

AK = CK = AC/28/2= 4 (K là tia đối của AC)

Diện tích hình chữ nhật AIMK :

SAIMK = AI.AK = 3.4 = 12 cm2

b) Áp dụng Py-ta-go vào Δ vuông ABC có:

BC2 = AB2 + AC2

hay BC2 = 62 + 82 = 100

=> BC = 10

Xét Δ vuông ABC có :

AM là đường trung tuyến ứng với BC

=> AM = 1/2BC = 1/2.10

=> AM = 5

Vậy AM = 5cm

c) Có IM = AK (cạnh đối hình chữ nhật AIMK)

mà JI = JM = 1/2IM và SA = SK = 1/2AK

=> JI = JM = SA = SK (1)

Có IA = MK (cạnh đối hình chữ nhật AIMK )

mà PI = PA = 1/2IA và HM = HK = 1212MK

=> PI = PA = HM = HM (2)

Có góc A = góc I = góc M = góc K (3)

Từ (1) (2) và (3) suy ra :

ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)

=> JP = JH = SP = SH (các cạnh tương ứng )

=> Tứ giác JPSH là hình thoi

=> PH vuông góc với JS (tính chất đường chéo hình thoi)