Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M; N; Q lần lượt là trung điểm của AB; AC; BC (gt)
=> MN; NQ; MQ là đường trung bình của tam giác ABC (đn)
=> MN = 1/2BC ; NQ = 1/2AB; MQ = 1/2AC (đl)
=> MN + NQ + MQ = 1/2BC + 1/2AB + 1/2AC
=> MN + NQ + MQ = 1/2(AB + AC + BC)
chu vi của tam giác ABC = 48 cm (gt) => AB + AC + BC = 48
=> MN + NQ + MQ = 1/2*48 = 24
có NQ : MN : MQ = 9 : 8 : 7
=> NQ/9 = MN/8 = MQ/7
=> (NQ + MN + MQ)/(9 + 8 + 7) = NQ/9 = MN/8 = MQ/7
=> 24/24 = NQ/9 = MN/8 = MQ/7
=> 1 = NQ/9 = MN/8 = MQ/7
=> NQ = 9; MN = 8; MQ = 7
từ đó tính ra các cạnh
a) Xét tam giác ABC có : BN = CN
AP = PC
suy ra : NP là đường trung bình của tam giác ABC
suy ra : NP song song với AB và NP = AB/2
Xét tam giác ABC có : AM = BM ; BN = CN
suy ra MN là đường trung bình của tam giác ABC
suy ra MN song song với AC và MN = AC/2
Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )
NP song song với MA ( NP song song AB )
suy ra : tứ giác AMNP là hbh
mà góc BAC = 90 độ
suy ra : hbh AMNP là hcn
b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )
suy ra : công thức tính diện tích hcn AMNP là :
SAMNP = MN.NP
Ta có : MN = AC/2
mà AC = 8
suy ra : MN = 8/2 = 4cm
Ta có : NP = AB/2
mà AB = 6
suy ra : NP = 6/2 = 3cm
suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)
c) phần c hình như sai rồi á bạn
d) Ta có : AMNP là hcn ( đã C/M ở phần a )
Để hcn AMNP là hình vuông
khi và chỉ khi : MA = MN
mà MA = BA/2
MN = CA/2
suy ra : để hcn nhật AMNP là hv thì AB = AC
Áp dụng định lí Pytago vào tam giác vuông ABC ta có:
B C 2 = A B 2 + A C 2 = 6 2 + 8 2 = 100
Suy ra: BC = 10cm
Do M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC
Suy ra:
Chọn đáp án C
a) Xét tam giác ABC có:
M,N là trung điểm BC,AB
=> MN là đường trung bình
=> MN//AC
=> ANMC là hthang
Mà \(\widehat{NAC}=90^0\)(Tam giác ABC vuông tại A)
=> ANMC là hthang vuông
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét tam giác ABC có:
AM là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)