K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

\(S=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)

đặt \(\sqrt{\left(3x-1\right)^2}=t\left(t\ge0\right)\) => \(S=1-t+t^2=\left(t^2-t+\frac{1}{4}\right)+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow MinS=\frac{3}{4}\Leftrightarrow t=\frac{1}{2}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\frac{1}{2}\)

\(\Leftrightarrow\left(3x-1\right)^2=\frac{1}{4}\Leftrightarrow3x-1=+-\frac{1}{2}\Leftrightarrow3x=1+-\frac{1}{2}\Leftrightarrow x=\frac{\left(1+-\frac{1}{2}\right).}{3}\)

13 tháng 5 2015

S = 1 - |1 - 3x| + |1-3x|2 = |1-3x|2 - 2.|1-3x|.\(\frac{1}{2}\) + \(\frac{1}{4}+\frac{3}{4}\) = (|1-3x| - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\)=\(\frac{3}{4}\)

=> Min S = \(\frac{3}{4}\) khi |1-3x| = \(\frac{1}{2}\) <=> 1-3x = \(\frac{1}{2}\) hoặc 1 - 3x = -\(\frac{1}{2}\)

1-3x = \(\frac{1}{2}\) <=> x = 1/6

1-3x = -\(\frac{1}{2}\)<=> x = 1/2

Vậy....

\(A=1-|1-3x|+|3x-1|^2\)

\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)