Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.
Cách làm như sau:
\(4M=4a^2+4ab+4b^2-12a-12b+8004\)
\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)
\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)
\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)
Vậy 4M min = 7992, vây M min = 1998.
Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)
S = 1 - |1 - 3x| + |1-3x|2 = |1-3x|2 - 2.|1-3x|.\(\frac{1}{2}\) + \(\frac{1}{4}+\frac{3}{4}\) = (|1-3x| - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\)=\(\frac{3}{4}\)
=> Min S = \(\frac{3}{4}\) khi |1-3x| = \(\frac{1}{2}\) <=> 1-3x = \(\frac{1}{2}\) hoặc 1 - 3x = -\(\frac{1}{2}\)
1-3x = \(\frac{1}{2}\) <=> x = 1/6
1-3x = -\(\frac{1}{2}\)<=> x = 1/2
Vậy....
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này
A = x2 + 5y2 + 4xy + 3x + 8y + 26
= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4
= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4
= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4
Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)
Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)
A = x2 + 5y2 + 4xy + 3x + 8y + 26
= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)
= \(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)
= \(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)
Vậy Min A = 91/4 <=> x = 1/2 ; y = -1