CẦU CỨU NHỮNG THẦN ĐỒNG TOÁN HỌC! :>>
CMR: n2+7n+22 không chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=n^2+7n+22
Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3
=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3
Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1
Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
\(\Rightarrow n\left(n+7\right)+9⋮n+7\\ \Rightarrow n+7\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Rightarrow n=2\left(n\in N\right)\)
đây nha bạn: CMR: n^2+7n+22 không chia hết cho 9? | Yahoo Hỏi & Đáp
Vì trong tổng n2 +7n + 22 có số 22 không chia hết cho 9 nên tổng này không chia hết cho 9
Mạc dù vậy nhưng nếu n2+7n chi cho 9 dư 5 thì tổng vẫn chia hết cho 9
ta co: n^2+7n+22
=> n^2+2n+5n+10+12
=>n(n+2)+5(n+2)+12
=>(n+5)(n+2)+12.
+) Xet (n+5)-(n+2)=3 => n+5 va n+2 vua co the chia het cho 3, vua co the ko chia het cho 3.
+) Neu (n+5)(n+2) chia het cho 3 => dong thoi chia het ca cho 9. Ma 12 ko chia het cho 9 => dpcm.
+) Neu (n+5) va (n+2) ko chia het cho 3 => tich cua chung ko chia het cho 3. Ma 12 chia het cho 3 => (n+5)(n+2)+12 ko chia het cho => ko chia het not cho 9 => dpcm.