chung minh x,y doi nhau biet xy - xz + yz - z mũ 2 = -1 biết x, y,z thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết suy ra : \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
Do đó : \(x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz},y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz},z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
Suy ra : ( x- y ) ( y - z ) ( z - x ) = \(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
nên ( x - y ) ( y - z ) ( z - x ) ( x2y2z2 - 1 ) = 0
từ đây bạn giải được rồi đó ( xét các TH = 0 thôi )
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(VT=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(VT=2xy+2yz+2xz\)
\(VT=2\left(xy+yz+xz\right)\)
\(VT=VP\left(đpcm\right)\)
* VT: vế trái
VP: vế phải
xy - xz + yz - z mũ 2 = -1
x(y-z) + z(y-z) = -1
(y-z)(x+z) = -1
=> (y-z) ; (x+z) thuộc Ư(-1)
=> 2 trường hợp
trường hợp 1: x+z =1 => x= 1 - z hay x= +(1-z)
và y-z= -1 => y = -1 + z hay y= -(1-z)
trường hợp 2: x+z=-1=> x= - (1+z)
và y-z = 1 => y= +(1+z)
từ 2 trường hợp đó ta có x và y đối nha