Chứng minh
a. (97-312)⋮8
b. (106-57)⋮59
Nhờ giải giúp em bài này ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
a. \(x+\dfrac{2}{5}=\dfrac{6}{7}\)
\(x=\dfrac{6}{7}-\dfrac{2}{5}=\dfrac{16}{35}\)
b. \(x=6,3.1,5=9,45\)
Câu 8:
Đáy bé là: \(\dfrac{2}{3}.120=80\) m
Diện tích thửa ruộng là:
( 120 + 80) x 76 : 2 = 7600 m vuông
Số kg thu hoạch được là:
7600 : 100 x 64,5 = 4902 kg
Đổi 4902 kg = 49,02 tạ thóc
106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
a) \(\dfrac{15}{59}>\dfrac{15}{60}=\dfrac{1}{4}\)
\(\dfrac{24}{97}< \dfrac{24}{96}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{15}{59}>\dfrac{24}{97}\)
b) \(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}\)
\(\dfrac{19}{77}< \dfrac{19}{76}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{19}{77}\)
a: \(\dfrac{15}{59}>\dfrac{15}{60}=\dfrac{1}{4}\)
\(\dfrac{1}{4}=\dfrac{24}{96}>\dfrac{24}{97}\)
Do đó: \(\dfrac{15}{59}>\dfrac{24}{97}\)
\(\left(42-x\right)\times8=264\)
\(\Leftrightarrow42-x=264\div8\)
\(\Leftrightarrow42-x=33\)
\(\Leftrightarrow x=42-33\)
\(\Leftrightarrow x=9\)
\(\left(x-46\right)\div8=33\)
\(\Leftrightarrow x-46=33\times8\)
\(\Leftrightarrow x-46=264\)
\(\Leftrightarrow x=264+46\)
\(\Leftrightarrow x=310\)
a,(42-x)*8=264
42-x =264:8
42-x =33
x =42-33
x =9
b,(x-46):8=33
x-46 =33*8
x-46 =264
x =264+46
x =310
\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)
\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)
\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)
\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)
a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)
\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)
\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)
\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)
\(=\dfrac{5-9-2\left(5-7\right)}{2}\)
\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)
\(=0\)
a.
\(9^7-3^{12}=9^7-\left(3^2\right)^6=9^7-9^6\\ =9^6\left(9-1\right)=9^6.8⋮8\Rightarrowđpcm\)
b.
\(10^6-5^7=\left(2.5\right)^6-5^7=5^6\left(2^6-5\right)\\ =5^6.59⋮59\Rightarrowđpcm\)