Nguyên lí Đi-rích-lê ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyên lí Đi-rích-clê là Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật
- Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.
Nguyên lý Dirichlet cơ bản:
Nếu nhốt n+1 con thỏ vào n cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con thỏ.
· Nguyên lý Dirichlet mở rộng:
Nếu nhốt n con thỏ vào cái chuồng thì tồn tại một chuồng có ít nhất con thỏ .
Ở đây kí hiệu để chỉ phần nguyên của .
Ta có thể chứng minh nguyên lý Dirichlet mở rộng như sau: Giả sử mọi chuồng thỏ không có đến ==(con)
thì số thỏ trong mỗi chuồng đều nhỏ hơn hoặc bằng con. Từ đó suy ra tổng số con thỏ không vượt quá con. Điều này vô lý vì có n con thỏ. Vậy giả thiết phản chứng là sai. Nguyên lý Dirichlet mở rộng được chứng minh.
· Nguyên lý Dirichlet dạng tập hợp:
Cho A và B là hai tập hợp khác rỗng có số phần tử hữu hạn và số lượng phần tử của A lớn hơn số lượng phần tử của B. Nếu với một quy tắc nào đó, mỗi phần tử của A cho tương ứng với một phần tử của B thì tồn tai ít nhất hai phần tử của A (hai phần tử khác nhau) tương ứng với một phần tử của B.
· Nguyên lý Dirichlet dạng tập hợp mở rộng:
Giả sử A, B là hai tập hợp hữu hạn và S(A), S(B) tương ứng kí hiệu là các số lượng phần tử của A và B. Giả sử có một số tự nhiên k nào đó mà S(A) > k S(B) và ta có quy tắc cho tương ứng với mỗi phần tử của A với một phần tử của B. Khi đó tồn tại ít nhất k/1 phần tử của B.
Chú ý: Khi k = 1 ta có ngay lại nguyên lý Dirichlet.
· Nguyên lý Dirichlet vô hạn:
Nếu chia một tập hợp vô hạn các quả táo vào hữu hạn các ngăn kéo thì phải có ít nhất một ngăn kéo chứa vô hạn quả táo.
Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.
Định nghĩa[sửa | sửa mã nguồn]
Cho số nguyên dương n, hai số nguyên a,b được gọi là đồng dư theo mô-đun n nếu chúng có cùng số dư khi chia cho n. Điều này tương đương với hiệu a-b chia hết cho n.
Ký hiệu:
{\displaystyle a\equiv b{\pmod {n}}\,}
Ví dụ:
{\displaystyle 11\equiv 5{\pmod {3}}\,}
Vì 11 và 5 khi chia cho 3 đều cho số dư là 2:
11: 3 = 3 (dư 2)
5: 3 = 1 (dư 2)
Tính chất[sửa | sửa mã nguồn]
Ngoài các tính chất của một quan hệ tương đương (phản xạ, đối xứng, bắc cầu), phép đồng dư còn có thêm các tính chất sau: Có thể cộng, trừ, nhân và nâng lên lũy thừa các đồng dư thức có cùng một mô-đun, cụ thể. Nếu ta có:
{\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}
{\displaystyle b_{1}\equiv b_{2}{\pmod {n}}\,}
Thì ta có:
- {\displaystyle (a_{1}+b_{1})\equiv (a_{2}+b_{2}){\pmod {n}}\,}
- {\displaystyle (a_{1}-b_{1})\equiv (a_{2}-b_{2}){\pmod {n}}\,}
- {\displaystyle (a_{1}b_{1})\equiv (a_{2}b_{2}){\pmod {n}}.\,}
- {\displaystyle a_{1}^{k}\equiv a_{2}^{k}{\pmod {n}}\,}, với k nguyên dương.
Luật giản ước[sửa | sửa mã nguồn]
Nếu {\displaystyle (a_{1}*b)\equiv (a_{2}*b){\pmod {n}}\,} và (b,n)=1 (b,n nguyên tố cùng nhau) thì {\displaystyle a_{1}\equiv a_{2}{\pmod {n}}\,}
Nghịch đảo mô-đun[sửa | sửa mã nguồn]
Nếu số nguyên dương n và số nguyên a nguyên tố cùng nhau thì tồn tại duy nhất một số {\displaystyle x\in \{0,1,2,\cdots ,n-1\}} sao cho: {\displaystyle ax\equiv 1{\pmod {n}}\,}, số x này được gọi là nghịch đảo của a theo mô-đun n.
Hệ thặng dư đầy đủ[sửa | sửa mã nguồn]
Tập hợp {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} được gọi là một hệ thặng dư đầy đủ mô-đun n nếu với mọi số nguyên i, {\displaystyle 0\leq i\leq n-1}, tồn tại duy nhất chỉ số j sao cho {\displaystyle a_{j}\equiv i{\pmod {n}}\,}.
Tính chất[sửa
- Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{a_{1}+a,a_{2}+a,\cdots ,a_{n}+a\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a.
- Nếu {\displaystyle \{a_{1},a_{2},\cdots ,a_{n}\}} là một hệ thặng dư đầy đủ mô-đun n thì {\displaystyle \{aa_{1},aa_{2},\cdots ,aa_{n}\}} là một hệ thặng dư đầy đủ mô-đun n với mọi số nguyên a nguyên tố cùng nhau với n.
Trong toán học, đặc biệt là trong đại số và lý thuyết số, quan hệ đồng dư (gọi đơn giản là đồng dư) là một quan hệ tương đương trên tập hợp số nguyên.
VD :
- , với k nguyên dương.
Nếu đem m thỏ vào n lồng với m>n thì ít nhất cũng có một lồng nhốt không ít hơn 2 thỏ. Tương tự, nếu đem m đồ vật vào n ô ngăn kéo, với m>n, thì ít nhất cũng phải có 1 ô ngăn kéo chứa không ít hơn 2 đồ vật
Phần chứng minh bài toán, các bạn chắc gần như ai cũng biết, mình chỉ xin nêu một vài bài toán vận dụng cơ bản.
Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.
Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.
Nguyên lý Dirichlet do nhà toán học người Đức nổi tiếng là Dirichlet đề xuất từ thế kỷ XX đã được áp dụng để chứng minh sự tồn tại nghiệm trong nhiều bài toán tổ hợp. Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý “nguyên lý quả cam” hay là nguyên lý “chuồng chim bồ câu”: Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.
- Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:
Nếu xếp nhiều hơn n+1 đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn hai đối tượng.
- Việc chứng minh nguyên lý này có thể tiến hành bằng lập luận phản chứng rất đơn giản: Giả sử không hộp nào chứa nhiều hơn một đối tượng thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.
Trong toán học, nguyên lý chuồng bồ câu, nguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.
trích wikipedia
Đại khái là cậu có ba cái chuồng mà chỉ có hai con chó thì chắc chắn sẽ phải có nhiều hơn một con chó trong một cái chuồng, còn nếu bảo áp dụng thật thì nhắn tin hỏi cô giáo đi :)))))
ảo quá toàn A
Câu 61. Sắp xếp theo thứ tự thời gian tồn tại của các triều đại phong kiến Việt Nam trong các thế kỉ X-XV:
A. Ngô, Đinh, Tiền Lê, Lí, Trần, Hồ, Lê sơ.
B. Lí, Trần, Ngô, Đinh, Tiền Lê, Hồ, Lê sơ.
C. Ngô, Đinh, Tiền Lê, Hồ, Lí , Trần , Lê sơ.
D. Ngô, Đinh, Tiền Lê, Trần, Hồ, Lí, Lê sơ.
Câu 62. Trong xã hội nước ta dưới thời Bắc thuộc, mâu thuẫn xã hội nào là cơ bản nhất?
A. giữa nhân dân ta với chính quyền đô hộ phương Bắc.
B. giữa nông dân với địa chủ phong kiến phương Bắc
C. giữa vua, quý tộc với chính quyền đô hộ phương Bắc.
D. giữa vua, quan lai với chính quyền đô hộ phương Bắc.
Câu 63. Những chính sách cai trị của các triều đại phong kiến phương Bắc đối với nước ta từ năm 179 TCN đến thế kỉ X nhằm thực hiện âm mưu gì?
A. Sát nhập nước ta vào lãnh thổ Trung Quốc.
B. Biến nước ta thành thuộc địa kiểu mới.
C. Phát triển nền kinh tế hàng hoá ở nước ta.
D. Xây dựng chính quyền phong kiến ở nước ta
Câu 64. Nội dung cơ bản của các bộ luật thời Lý – Trần, Lê Sơ nhằm mục đích
A. bảo vệ quyền lợi của giai cấp phong kiến
B. bảo vệ lợi ích của mọi tầng lớp trong xã hội
C. bảo vệ đất đai và lãnh thổ của Tổ quốc.
D. bảo vệ tính mạng và tài sản của nông dân
1111111111111
nguyên tắc nhốt thỏ vào lông hả e