tìm nghệm ự nhiên của pt
x2-y2=y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4+y^4-1=xy\left(3-2xy\right)\)
\(\Leftrightarrow x^4+y^4-1=3xy-2x^2y^2\)
\(\Leftrightarrow x^4+2x^2y^2+y^4=3xy+1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=3xy+1\)
Vì \(\left(x^2+y^2\right)^2\ge0\forall x;y\)
\(\Rightarrow3xy+1\ge0\)
\(\Leftrightarrow xy\ge-\frac{1}{3}\)
\(\Leftrightarrow P\ge-\frac{1}{3}\)
Dấu "=" tại x = y = 0
\(a,m=5\Leftrightarrow x^2+10x+25-3x+6=0\\ \Leftrightarrow x^2+7x+31=0\\ \Delta=49-4\cdot31< 0\\ \Leftrightarrow x\in\varnothing\)
\(b,PT\Leftrightarrow x^2+x\left(2m-3\right)+m^2+6=0\)
PT có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}1\ne0\\\Delta=\left(2m-3\right)^2-4\left(m^2+6\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-12m+9-4m^2-24\ge0\\ \Leftrightarrow-12m-15\ge0\\ \Leftrightarrow m\le-\dfrac{5}{4}\)
2+4+6+...+198+200 có : (200-2):2+1=100 (số)
tổng: (200+2).100:2=10100
=> n.(n+1)=10100
=> n.(n+1)=100.101
=> n=100
số số hạng :
\(\left(200-2\right):2+1=100\)
\(n+1=\frac{\left(200+2\right).100}{2}\)
\(n+1=10100\)
\(n=10099\)
b: \(\text{Δ}=\left(-2m\right)^2-4\left(-4m-5\right)\)
\(=4m^2+16m+20\)
\(=4m^2+16m+16+4\)
\(=\left(2m+4\right)^2+4>0\forall m\)
Có:\(x_1+x_2=\dfrac{-b}{a}=m\) ;\(x_1x_2=\dfrac{c}{a}=m-1\)
Vì y1=x12;y2=x22 nên ta có:
\(y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)^2\)
\(=m^2-2\left(m^2-2m+1\right)=-m^2+4m-2\)
\(y_1y_2=x_1^2x_2^2=\left(m-1\right)^2\)
Xét pt : a2y2+b2y+c2=0
Có: \(\dfrac{-b_2}{a_2}=-m^2+4m-2;\dfrac{c_2}{a_2}=m^2-2m+1\)
Chọn a2=1, khi đó ta có pt bậc 2 ẩn y:
\(y^2+\left(m^2-4m+2\right)y+m^2-2m+1=0\)
x=+-1
y=0
\(x^2-y^2=y+1\)
\(\Leftrightarrow4x^2-4y^2-4y-4=0\)
\(\Leftrightarrow4x^2-\left(2y+1\right)^2=3\)
\(\Leftrightarrow\left(2x-2y-1\right)\left(2x+2y+1\right)=3\)
\(\Leftrightarrow\hept{\begin{cases}2x+2y+1=1\\2x-2y-1=3\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y+1=3\\2x-2y-1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(l\right)}\)hoặc \(\hept{\begin{cases}x=1\\y=0\end{cases}\left(nhan\right)}\)