K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

x=+-1

y=0

14 tháng 1 2017

\(x^2-y^2=y+1\)

\(\Leftrightarrow4x^2-4y^2-4y-4=0\)

\(\Leftrightarrow4x^2-\left(2y+1\right)^2=3\)

\(\Leftrightarrow\left(2x-2y-1\right)\left(2x+2y+1\right)=3\)

\(\Leftrightarrow\hept{\begin{cases}2x+2y+1=1\\2x-2y-1=3\end{cases}}\)hoặc \(\hept{\begin{cases}2x+2y+1=3\\2x-2y-1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(l\right)}\)hoặc \(\hept{\begin{cases}x=1\\y=0\end{cases}\left(nhan\right)}\)

27 tháng 4 2019

Ta có \(x^4+y^4-1=xy\left(3-2xy\right)\)

\(\Leftrightarrow x^4+y^4-1=3xy-2x^2y^2\)

\(\Leftrightarrow x^4+2x^2y^2+y^4=3xy+1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=3xy+1\)

Vì \(\left(x^2+y^2\right)^2\ge0\forall x;y\)

\(\Rightarrow3xy+1\ge0\)

\(\Leftrightarrow xy\ge-\frac{1}{3}\)

\(\Leftrightarrow P\ge-\frac{1}{3}\)

Dấu "=" tại x = y = 0

8 tháng 1 2017

3x^2 hay 3x^3 thế

6 tháng 11 2021

\(a,m=5\Leftrightarrow x^2+10x+25-3x+6=0\\ \Leftrightarrow x^2+7x+31=0\\ \Delta=49-4\cdot31< 0\\ \Leftrightarrow x\in\varnothing\)

\(b,PT\Leftrightarrow x^2+x\left(2m-3\right)+m^2+6=0\) 

PT có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}1\ne0\\\Delta=\left(2m-3\right)^2-4\left(m^2+6\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-12m+9-4m^2-24\ge0\\ \Leftrightarrow-12m-15\ge0\\ \Leftrightarrow m\le-\dfrac{5}{4}\)

27 tháng 7 2015

2+4+6+...+198+200 có : (200-2):2+1=100 (số)

tổng: (200+2).100:2=10100

=> n.(n+1)=10100

=> n.(n+1)=100.101

=> n=100

25 tháng 6 2018

số số hạng : 

\(\left(200-2\right):2+1=100\)

\(n+1=\frac{\left(200+2\right).100}{2}\)

\(n+1=10100\)

\(n=10099\)

b: \(\text{Δ}=\left(-2m\right)^2-4\left(-4m-5\right)\)

\(=4m^2+16m+20\)

\(=4m^2+16m+16+4\)

\(=\left(2m+4\right)^2+4>0\forall m\)

26 tháng 1 2019

Có:\(x_1+x_2=\dfrac{-b}{a}=m\) ;\(x_1x_2=\dfrac{c}{a}=m-1\)

Vì y1=x12;y2=x22 nên ta có:

\(y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)^2\)

\(=m^2-2\left(m^2-2m+1\right)=-m^2+4m-2\)

\(y_1y_2=x_1^2x_2^2=\left(m-1\right)^2\)

Xét pt : a2y2+b2y+c2=0

Có: \(\dfrac{-b_2}{a_2}=-m^2+4m-2;\dfrac{c_2}{a_2}=m^2-2m+1\)

Chọn a2=1, khi đó ta có pt bậc 2 ẩn y:

\(y^2+\left(m^2-4m+2\right)y+m^2-2m+1=0\)