Cho tam giác ABC có góc B=C. Từ C kẻ Cx // BA(Cx và BA cùng nằm trên 1 nửa mặt phẳng bờ AC).Gọi I là trung điểm của BC, D là 1 điểm nằm giữa A và B. Tia DI cắt Cx ở E. Chứng minh:
a, BD = CE
b,Tia CB là tia phân giác của góc ACx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AB // Cx nên góc ABC = BCE ( so le trong )
Xét ΔDBI và ΔECI có:
DB = EC (GT)
ABC = BCE ( chứng minh trên )
BI = CI (suy từ gt)
=> ΔDBI = ΔECI (c.g.c)
b) Do AB = AC nên ΔABC cân tại A
đc góc ABC = ACB (1)
mà AB // Cx => góc ABC = BCE (so le trong) (2)
Từ (1) và (2) suy ra ACB = BCE
Do đó CB là tia pg của góc ACE
c) Lại do ΔDBI = ΔECI nên góc BID = CIE (2 góc tương ứng)
mà 2 góc này đối nhau nên D, I, E thẳng hàng → đpcm
Chúc học tốt Tam Nguyen Thanh
VÌ tg AID+ tg DIx=180độ
mà tg DIx+ tg EIx=180độ
suy ra tg AID= tg EIx
hay DIE= 180 độ
suy ta 3 điểm D; I:E thẳng hàng
hình bạn tự vẽ nhé
xét tam giác BID và tam giác CIE có
BI = IC
góc DBI = góc ECI (so le trong)
\(\widehat{DIB}=\widehat{EIC}\)ĐỐI ĐỈNH
suy ra tam giác BID = tam giác CIE (g.c.g)
suy ra BD = CE ( 2 cạnh tương ứng )
b) ta có \(\widehat{ABC}=\widehat{ACB},\widehat{ABC}=\widehat{xCB}\Rightarrow\widehat{ACB}=\widehat{xCB}\)
mà tia CB nằm giữa 2 tia CA và Cx nên CB là phân giác góc ACx
chúc bạn học giỏi
Ví von hay lắm man