Tìm m để có hai điểm cực trị tại thỏa mãn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
y ' = 3 x 2 - 6 x + m .
Hàm số có cực trị khi y' = 0 có hai nghiệm phân biệt :
Chọn D.
Ta có:
Để hàm số có hai cực trị x1, x2 thì phương trình (1) có hai nghiệm phân biệt.
Khi đó:
Mà theo yêu cầu bài toán x1, x2 thỏa mãn: x 1 2 + x 2 2 = 6
Mặt khác theo Vi-et ta có:
thay vào (2) ta được thỏa mãn điều kiện (*).
Vậy m = -3.
y'=3x2−6x+m.y'=3x2-6x+m.
Hàm số có hai cực trị khi y' = 0 có hai nghiệm phân biệt :