K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(−a).b2 (Do a<0 nên |a|=−a và b≠0 nên b2>0   |b2|=b2)

=−3.

b) 27(a−3)248=9(a−3)216

=9.(a−3)216=3.|a−3|4

=3(a−3)4

(Do a>3 nên |a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b.

(Do a≥−1,5  3+2a≥0 nên |3+2a|=3+2a và b<0 nên |b|=−b)

d) (a−b).ab(a−b)2=(a−b).ab(a−b)2

=(a−b).ab|a−b|=(a−b).ab−(a−b)

=−ab.

(Do a<b<0 nên |a−b|=−(a−b) và ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(−a).b2 (Do a<0 nên |a|=−a và b≠0 nên b2>0   |b2|=b2)

=−3.

b) 27(a−3)248=9(a−3)216

=9.(a−3)216=3.|a−3|4

=3(a−3)4

(Do a>3 nên |a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|
=3+2a−b=−2a+3b.

(Do a≥−1,5  3+2a≥0 nên |3+2a|=3+2a và b<0 nên |b|=−b)

d) (a−b).ab(a−b)2=(a−b).ab(a−b)2

=(a−b).ab|a−b|=(a−b).ab−(a−b)

=−ab.

(Do a<b<0 nên |a−b|=−(a−b) và ab>0)

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

15 tháng 4 2021

Để học tốt Toán 9 | Giải bài tập Toán 9

Bạn học tốt nhé

13 tháng 5 2021

a)0,6.a

b)\(a^2\).(a-3)

c)36.(a-1)

d)\(\dfrac{1.a^2}{a-b}\).(a-b)

25 tháng 4 2021

Rút gọn ta được:

M=√a−1/√a

Viết M ở dạng M=1−1/√a

suy ra M<1

29 tháng 4 2021

Với \(x>0;x\ne1\)

\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1 

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}

=3 \sqrt{-a}-|3+2 a|

Thay a=-9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6.

b) Điều kiện: m \neq 2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}

=1+\dfrac{3 m|m-2|}{m-2}

+) m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m(1)

+) m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m(2)

Với m=1,5<2. Thay vào biểu thức (2) ta có: 1-3 m=1-3.1,5=-3,5

Vậy giá trị biểu thức tại m=1,5 là -3,5.

c) \sqrt{1-10 a+25 a^{2}}-4a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a

=\sqrt{(1-5a)^{2}}-4 a

=|1-5 a|-4 a

+) Với a <\dfrac{1}{5}, ta được: 1-5a-4 a=1-9a(3)

+) Với a \ge \dfrac{1}{5}, ta được: 5 a-1-4 a=a-1(4)

Vì a=\sqrt{2}>\dfrac{1}{5}. Thay vào biểu thức (4) ta có: a-1=\sqrt{2}-1.

Vậy giá trị của biểu thức tại a=\sqrt{2} là \sqrt{2}-1.

d) 4 x-\sqrt{9 x^{2}+6 x+1}

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}

=4 x-|3x+1|

+) Với 3x+1 \geq 0 \Leftrightarrow x \ge -\dfrac{1}{3}, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-1(5)

+) Với 3x+1<0 \Leftrightarrow x <-\dfrac{1}{3}, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+1(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}. Thay vào biểu thức (6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+1.

Giá trị của biểu thức tại x=-\sqrt{3} là -7 \sqrt{3}+1.

24 tháng 4 2021

LG a

√18(√2−√3)2;18(2−3)2;

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

+ Sử dụng định lí so sánh hai căn bậc hai số học:  Với hai số a, ba, b không âm, ta có:

a<b⇔√a<√ba<b⇔a<b

Lời giải chi tiết:

Ta có:

√18(√2−√3)2=√18.√(√2−√3)218(2−3)2=18.(2−3)2

                               =√9.2.|√2−√3|=√32.2.|√2−√3|=9.2.|2−3|=32.2.|2−3|

                               =3√2.|√2−√3|=3√2(√3−√2)=32.|2−3|=32(3−2)

                               =3√2.3−3(√2)2=32.3−3(2)2

                               =3√6−3.2=3√6−6=36−3.2=36−6.

(Vì  2<3⇔√2<√3⇔√2−√3<02<3⇔2<3⇔2−3<0

Do đó: |√2−√3|=−(√2−√3)=−√2+√3|2−3|=−(2−3)=−2+3=√3−√2=3−2).

LG b

ab√1+1a2b2ab1+1a2b2

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

ab√1+1a2b2=ab√a2b2a2b2+1a2b2=ab√a2b2+1a2b2ab1+1a2b2=aba2b2a2b2+1a2b2=aba2b2+1a2b2

                         =ab√a2b2+1√a2b2=ab√a2b2+1√(ab)2=aba2b2+1a2b2=aba2b2+1(ab)2

                         =ab√a2b2+1|ab|=aba2b2+1|ab|

Nếu ab>0ab>0 thì |ab|=ab|ab|=ab

          ⇒ab√a2b2+1|ab|=ab√a2b2+1ab=√a2b2+1⇒aba2b2+1|ab|=aba2b2+1ab=a2b2+1.

Nếu ab<0ab<0 thì |ab|=−ab|ab|=−ab

           ⇒ab√a2b2+1|ab|=ab√a2b2+1−ab=−√a2b2+1⇒aba2b2+1|ab|=aba2b2+1−ab=−a2b2+1.

LG c

√ab3+ab4ab3+ab4

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

√ab3+ab4=√a.bb3.b+ab4=√abb4+ab4ab3+ab4=a.bb3.b+ab4=abb4+ab4

=√ab+ab4=√ab+a√(b2)2=√ab+a|b2|=√ab+ab2=ab+ab4=ab+a(b2)2=ab+a|b2|=ab+ab2.

(Vì b2>0b2>0 với mọi b≠0b≠0 nên |b2|=b2|b2|=b2).

LG d

a+√ab√a+√ba+aba+b

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có:

a+√ab√a+√b=(√a)2+√a.√b√a+√b=√a(√a+√b)√a+√ba+aba+b=(a)2+a.ba+b=a(a+b)a+b

=√a=a.

Cách khác:

a+√ab√a+√b=(a+√ab)(√a−√b)(√a+√b)(√a−√b)=a√a−a√b+√ab.√a−√ab.√b(√a)2−(√b)2=a√a−a√b+a√b−b√aa−b=a√a−b√aa−b=√a(a−b)a−b=√a

28 tháng 5 2021

a) 23.(3−2)=6−26.

b) ab|ab|1+a2 b2. Rút gọn hơn, ta có kết quả

+) ab>0 thì ab1+1a2b2=1+a2 b2.

+) ab<0 thì ab1+1a2b2=−1+a2 b2.
c) 1b2ab+a.
d) Cách 1.

a+aba+b=(a+ab)(a−b)(a+b)(a−b).

28 tháng 4 2021

bạn tham khảo nha : https://loigiaihay.com/bai-76-trang-41-sgk-toan-9-tap-1-c44a26988.html

17 tháng 5 2021
a) a √ a 2 − b 2 − ( 1 + a √ a 2 − b 2 ) : b a − √ a 2 − b 2 = a √ a 2 − b 2 − a + √ a 2 − b 2 √ a 2 − b 2 ⋅ a − √ a 2 − b 2 b = a √ a 2 − b 2 − a 2 − ( √ a 2 − b 2 ) 2 b √ a 2 − b 2 = a √ a 2 − b 2 − a 2 − ( a 2 − b 2 ) b √ a 2 − b 2 = a √ a 2 − b 2 − b 2 b ⋅ √ a 2 − b 2 = a √ a 2 − b 2 − b √ a 2 − b 2 = a − b √ a 2 − b 2 = √ a − b ⋅ √ a − b √ a − b ⋅ √ a + b (do a > b > 0 )$ = √ a − b √ a + b Vậy Q = √ a − b √ a + b . b) Thay a = 3 b vào Q = √ a − b √ a + b , ta được: Q = √ 3 b − b √ 3 b + b = √ 2 b √ 4 b = √ 2 b √ 2 ⋅ √ 2 b = 1 √ 2 = √ 2 2 .
23 tháng 4 2021

Rút gọn các biểu thức sau với x≥0x≥0:

a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)

b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28

=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28

=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)

23 tháng 4 2021

a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)

\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)

\(=-5\sqrt{3x}+27\)

15 tháng 4 2021

a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)

do \(a\ge0\)

b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)

c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)

\(=15a-3a=12a\)do a > 0 

d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)

Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)

Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)

15 tháng 4 2021

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

  

d) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9 

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)

#Học tốt!!!

17 tháng 5 2021

\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)

\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)

\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)

\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)

\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)