K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`Sao hổng có ai trl z

24 tháng 10 2019

hổng ai trả lời vì bài khó qué ^^

2 tháng 1 2017

tớ chịu

bucminh

2 tháng 1 2017

Nguyễn Huy TúNguyễn Huy ThắngAkai Harumasoyeon_Tiểubàng giảiVõ Đông Anh TuấnHoàng Lê Bảo Ngọc

13 tháng 2 2016

6x + 11y+31 y chia hết cho 31
Suy ra 6x+ 42 y chia hết cho 31 
6(x+7y) chia hết cho 31 
Vậy x+7y cũng chia hết cho 31 và điều ngược lại cũng đúng 
Nếu thấy đúng cho mình cái hi

13 tháng 2 2016

* Ta có: 
 
 
Vì 
Mà ƯCLN(5,31) = 1 

12 tháng 2 2016

nhiều quá bạn ơi duyệt đi

15 tháng 6 2018

1. A.

\(n+2⋮n+1\) 

\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\) 

Mà \(\left(n+1\right)⋮\left(n+1\right)\)

Nên \(1⋮\left(n+1\right)\)  

\(\Rightarrow\left(n+1\right)€\)Ư(1)

       (n+1) € {1;—1}

TH1: n+1=1                  TH2: n+1=—1

         n    =1–1                       n    =—1 —1

         n    =0                           n    =—2

Vậy n€{0;—2}

15 tháng 6 2018

1a) 

n+2 chia hết cho n-1

hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)

Mà (n-1) chia hết cho n-1

nên 3 chia hết cho n-1

Suy ra n-1 thược Ư(3)={1;-1;3;-3}

Suy ra n thuộc {2;0;4;-2}

b) 3n-5 chia hết cho n-2

hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)

3(n-2)+1 chia hết cho n-2

Mà 3(n-2) chia hết cho n-2

nên 1 chia hết cho n-2

Suy ra n-2 thược Ư(1)={1;-1}

Suy ra n thuộc {3;1}

12 tháng 2 2020

Bài giải

a) Ta có: 4n + 3 là bội của n - 2

=> 4n - 3 \(⋮\)n - 2

=> 4(n - 2) + 5 \(⋮\)n - 2

Vì 4(n - 2) + 5 \(⋮\)n - 2 và 4(n - 2) \(⋮\)n - 2

Nên 5 \(⋮\)n - 2

Tự làm tiếp nha !

b) Ta có: n + 1 là ước của n + 4

=> n + 4 \(⋮\)n + 1

=> n + 1 + 3 \(⋮\)n + 1

Vì n + 1 + 3 \(⋮\)n + 1 và n + 1 \(⋮\)n + 1

Nên 3 \(⋮\)n + 1

............

c) Ta có: 31x + 186y \(⋮\)31   (x, y thuộc Z)

=> 6x + 11y + 25(x + 7y) \(⋮\)31

Ta còn có: 6x + 11y \(⋮\)31 (đề cho)

=> 25(x + 7y) \(⋮\)31

Mà 25 không chia hết cho 31

Nên x + 7y \(⋮\)31

=> ĐPCM

10 tháng 3 2020

       Câu hỏi của Chu Phương Thảo       

10 tháng 3 2020

Cậu tham khảo câu hỏi của nguyễn nam dũng- toán lớp 6-Học toán với online math

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31