K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

phá đầu giá trị tuyệt đối ra, có công thức /a/ +/b/ > hoặc bằng a+b đấy chứng minh rồi áp dụng vào

4 tháng 7 2015

Vì | x - 2001| > hoặc = 2001 - x

    | x - 1| > hoặc = x - 1

Nên A = |x - 2001| + | x - 1| > hoặc =  2001 - x + x - 1 = 2000

=> A > hoặc = 2002

=> Để A có giá trị nhỏ nhất <=> A = 2002

Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001    (1)

          x - 1 > hoặc = 0 nên x > hoặc = 1               (2)

Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001

Vậy A có GTNN là 2000 <=>  1 < hoặc = x < hoặc = 2001

4 tháng 5 2016

ta có A=

9 tháng 11 2016

\(A=\left|x-2001\right|+\left|x-1\right|\)

\(=\left|x-2001\right|+\left|1-x\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2001\right|+\left|1-x\right|\ge\left|x-2001+1-x\right|=2000\)

\(\Rightarrow A\ge2000\)

Dấu = khi \(\begin{cases}x-2001\le0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\le2001\\x\ge1\end{cases}\)\(\Rightarrow1\le x\le2001\)

Vậy MinA=2000 khi \(1\le x\le2001\)

2 tháng 12 2015

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

2 tháng 12 2015

Thanh Nguyễn Vinh chi tiết giùm

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

28 tháng 6 2017

Vì trị tuyệt đối của một số lớn hơn hoặc bằng số đó nên :

\(A=\left|x+1\right|+\left|x-3\right|=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

\(\Rightarrow minA=4\)\(\Rightarrow\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow-1\le}x\le3\)

26 tháng 5 2020

\(A=\left|x+2014\right|+\left|x-1\right|=\left|x+2014\right|+\left|1-x\right|\)

\(\ge\left|x+2014-x+1\right|=2015\)

Dấu "=" xảy ra <=> \(\left(x+2014\right)\left(1-x\right)\ge0\)

TH1: x + 2014 \(\ge\)0 và  1- x \(\ge\)

<=> x \(\ge\)-2014 và x \(\le\)1

<=>   \(-2014\le x\le1\)

TH2: x + 2014 \(\le\)0 và 1 - x \(\le\)

<=> x \(\le\)-2014 và x\(\ge\)

==> loại

Vậy GTNN của A = 2015 tại \(-2014\le x\le1\)