tìm số nguyên tố sao cho:
a) p+2 và p+4 đều là số nguyên tố
b) p+1 và p+14 đều là số nguyên tố
CÁC BẠN GIÚP MÌNH VỚI. MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN NHÌU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
a) xét các số nguyên tố p như sau:
+) xét p=2 => p++2=4 ( là hợp số, loại)
+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)
+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)
- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3
=> p+2 là hợp số( trái với đề, loại)
- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp ( trái với đề, loại)
vậy p=3.
b) ta xét các số nguyên tố p như sau:
+) xét p=2 =>p+14=16 ( là hợp số, loại)
+) xét p=3=> p+1=4 ( loại)
vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố)
=> không tìm được số nguyên tố thỏa mãn.
vậy không tìm được số nguyên tố thỏa mãn.
k cho mình nha!
a) P=3=> p+2=5; p+4=7
=> p =3 nhận
b) P=16