K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2022

\(\sqrt{x^2}=7\Rightarrow\left|x\right|=7\Rightarrow x=\pm7\)

24 tháng 8 2022

x=7

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

12 tháng 10 2021

đội tuyển toán tự làm đi m 

12 tháng 10 2021

:)) chụp đi ku

NV
22 tháng 6 2021

ĐKXĐ: \(x\ge1\)

\(\left(\sqrt{x-1}-1\right)+\left(\sqrt{x+7}-3\right)+\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\dfrac{x-2}{\sqrt{x-1}+1}+\dfrac{x-2}{\sqrt{x+7}+3}+\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt{x-1}+1}+\dfrac{1}{\sqrt{x+7}+3}+x-1\right)=0\)

\(\Leftrightarrow x-2=0\)

23 tháng 9 2021

Tham khảo: https://olm.vn/hoi-dap/detail/254086442152.html

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
ĐKXĐ: $-10\leq x\leq 8$

$x^2+2x+7=(x+1)^2+6\geq 6(1)$

Áp dụng BĐT Bunhiacopxky:

$(\sqrt{8-x}+\sqrt{x+10})^2\leq (8-x+x+10)(1+1)=36$

$\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6(2)$

Từ $(1); (2)\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6\leq x^2+2x+7$

Để pt xảy ra thì $\sqrt{8-x}+\sqrt{x+10}=6=x^2+2x+7$

$\Leftrightarrow x=-1$

28 tháng 5 2022

ĐKXĐ : -10 \(\le x\le8\)

Ta có \(3\sqrt{8-x}+3\sqrt{10+x}\le\dfrac{3^2+8-x}{2}+\dfrac{3^2+10+x}{2}=18\)

 (BĐT Cauchy)

=> \(\sqrt{8-x}+\sqrt{10+x}\le6\)

=> VT \(\le6\) (1)

Lại có VP = x2 + 2x + 7 = (x + 1)2 + 6 \(\ge6\) (2)

Từ (1) (2) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3=\sqrt{8-x}\\3=\sqrt{10+x}\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\)

Vậy x = -1 là nghiệm phương trình 

3 tháng 4 2022

<=>\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}-3y=3\\\sqrt{5}x-2y=7\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

KL: vậy hpt có ngiệm là \(\left\{{}\begin{matrix}x=\sqrt{5}\\y=-1\end{matrix}\right.\)