K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

10^2017+10^2016+10^2015

=10^2015.(10^2+10+1)=10^2015.111

=10^2014.10.111=10^2014.2.5.111=10^2014.2.555 chia hết cho 555 

31 tháng 12 2016

10^2017 + 10^2016 + 10^2015

= 10^2015(10^2+10+1)

= 10^2015.111

= 10^2014.10.111

= 10^2014.2.5.111

= 10^2014.2.555

mà 555 chia hết cho 555

<=> 10^2014.2.555 chia hết 555

vậy( 10^2017 +- 10^2016 + 10^2015) chia hết cho 555

20 tháng 7 2016

Ta có

333 chia hết cho 37 

=> 333555 chia hết cho 37

  Chứng minh tương tự

=> 555333 chia hết cho 37

Vậy 333555  +  555333  chia  hết cho 37

10 tháng 4 2016

(333555^777+777555^333)=...3+...7=...0

=>chia hết cho 10

11 tháng 4 2016

nhưng nhỡ nó có tận cùng là 9,1 thì sao

13 tháng 3 2017

Để mik giúp pạn nhé:

Ta có:

\(555^2\equiv5\)(mod 10)

\(555^3\equiv5\)( mod 10)

\(555^5=555^2.555^3\equiv5.5\equiv5\)(mod 10)

---> \(555^{777}\equiv5\)(mod 10)

Suy ra:

\(333^{555^{777}}\)đồng dư với \(333^5\)

Do \(333^5=3332.3333\equiv3\)(mod 10)

Vậy chữ số tận cùng của \(333^{555^{777}}\)là 3 (1)

Làm tương tự với \(777^{555^{333}}\)có chữ số tận cùng là 7 (2)

Từ (1) và (2) suy ra \(333^{555^{777}}+777^{555^{333}}\)có chữ số tận cùng là 0

Vậy \(333^{555^{777}}+777^{555^{333}}\)chia hết cho 10 (đpcm)

25 tháng 8 2018

Cho mình hỏi là tại sao 3332.3333 đồng dư vs 3 vậy??

10 tháng 11 2017

a) \(7^{n+4}-7^n\)

\(=7^n\left(7^4-1\right)\)

\(=7^n.2400⋮100\)

b) \(20^5\equiv1\left(mod11\right)\)

\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)

\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)

\(\Rightarrow20^5-1⋮11\)

29 tháng 3 2016

Ta có 555...5(2n chữ số)=55.10^(2n-2)+55.10^(2n-4)+...55.10

Mà mỗi số hạng của tổng trên dếu chia hết cho 11

=>5555...5(2n chữ số) chia hết cho 11 (đpcm)

Ta có những số chia hết cho 125 thì có 3 chữ số tận cùng là số chia hết cho 125

Mà 555 không chia hết cho 125

=>555...5(2n chữ số) không chia hết cho 125(đpcm)

29 tháng 3 2016

Ta có: 125=25.5 => 555..5 phải phân tích ta thành tích 2 số 1 số chia 5 cho 5, số còn là chia hết cho 25. Ta có 5555...5= 111...1. Mà 111...1 có tận cùng là 11 k chia hết cho 25 => 555...5 k chia hết cho 25. Ta có tổng các chữ số hàng lẻ trừ tổng các chữ số hằng chẵn chia hết cho 11 thì số đó chia hết cho 11 mà 555...555 có 2n chữ số => số chữ số hàng lẻ = số chữ số hàng chẵn => hiệu =0 chia hết cho 11( đpcm)

15 tháng 10 2015

109-108-107=107(102-10-1)=107.91 không chia hết cho 555

23 tháng 7 2015

a) 10\(^9\)+10\(^8\)+10\(^7\)

= 10\(^7\). (100 + 10 + 1)

= 10\(^6\) . 2 . 555 chia hết cho 555

b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
=  2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33

20 tháng 10 2018

b) \(16^5+2^{15}⋮33\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}.\left(1+2^5\right)\)

\(=2^{15}.33⋮33\)

15 tháng 7 2016

1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)

vì 1110 : 555 bằng 2 

=> ................... chia hết cho 555

15 tháng 7 2016

1) ( 1019+ 1018+1017) chia hết cho 555

= 1017.102+1018.10+1017

1017.(102+10+1)

= 1017.111

= 1016.10.111

= 1016.1110 = 1016.555.2

=> ( 1019+ 1018+1017) chia hết cho 555