cho tam giác ABC (góc A=90 độ ) có AB=AC gọi K là trung điểm cuả BC
a, chứng minh tam giác AKB= tam giác AKC và AK vuông góc vơi BC
b, từ C kẻ đường vuông góc với BC nó cắt tại AB tại E . chứng minh EC song song với EB
c, chứng minh CE=EB
GIÚP MÌNH MỚI Ạ
a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)
c,CEA +CBA=90 độ
ACB + ABC =90 độ
suy ra CEA = ACB
xét tam giác CAE và tam giác CAB
AC cạnh chung
CEA = ACB
suy ra tam giác ACE = ACB
suy ra CE= CB
mình ko viết góc các bạn để ý nha