K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)

c,CEA +CBA=90 độ

ACB + ABC =90 độ 

suy ra CEA = ACB 

xét tam giác CAE và tam giác CAB

AC cạnh chung

CEA = ACB 

 suy ra tam giác ACE = ACB

suy ra CE= CB

17 tháng 12 2017

mình ko viết góc các bạn để ý nha

a) Xét ΔAKB và ΔAKC có:

AB=AC(gt)

AK:cạnh chung

BK=CK(gt)

=> ΔAKB=ΔAKC(c.c.c)

=> AKBˆ=AKCˆAKB^=AKC^

Mà: AKBˆ+AKCˆ=180oAKB^+AKC^=180o

=> AKBˆ=AKCˆ=90oAKB^=AKC^=90o

=> AK⊥BCAK⊥BC

b) Vì: EC⊥BC(gt)EC⊥BC(gt)

Mad: AK⊥BC(cmt)AK⊥BC(cmt)

=> EC//AK

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)

\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:

\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)

b) 

Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)

\(\Rightarrow EC\parallel AK\) (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)

Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)

\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ: undefined

12 tháng 12 2014

a,xet tam giac AKB va tam giac AKC co:

BK=CK(gt)

AK canh chung

AB=AC(gt)

=>tam giac AKB=tam giac AKC(c.c.c)

b,xet tam giacABC co:

AB=AC=>tam giac ABC can tai A

=>AK vua la duong trung truc, vua la duong cao

=>AK vuong goc voi BC

c,ta co: AK vuong goc voi BC, CE vuong goc voi BC

=>CK song song voi CE

13 tháng 12 2014

của bạn sao y chan đè cương của mình luôn

11 tháng 12 2022

Cho tam giác ABC vuông tại A có AB AC = . Gọi K là trung điểm của BC. 1) Chứng minh  =  AKB AKC . 2) Qua C vẽ đường thẳng vuông góc với BC cắt AB tại E . Tính số đo góc AEC.

15 tháng 12 2021

a) Xét tam giác AKB và tam giác AKC , có                                                                                                                                                      AB=AC (GT)                                                                                                                                                                                                 BK là cạnh chung                                                                                                                                                                                             KB=KC ( K là trung điểm của BC)                                                                                                                                                                  Do vậy tam giác AKB = tam giác AKC (c.c.c)                                                                                                                                                  b) Có tam giác AKB = AKC (cmt)   

 => ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:

ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC 

Ta thấy: EC⊥BC ; AK⊥BC (cmt)

⇒EC∥AK⇒EC∥AK ()

c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45

Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45

⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB 

9 tháng 5 2017

Mình không vẽ hình được, bạn tự vẽ hình nhé!

a/ Xét tam giác AKB và tam giác AKC

Có: BK=CK (K là trung điểm BC)

      AK là cạnh chung (GT)

      AB=AC (GT)

Vậy tam giác AKB= tam giác AKC ( c.c.c) \(\Rightarrow\)Góc AKB= Góc AKC mà hai góc kề bù, vậy ^AKB=^AKC=90 độ

Vậy AK vuông góc với BC

c/ Có CE vuông góc với BC (GT) và AK cũng vuông góc với BC (CMT)

\(\Rightarrow\)CE song song với AK (cùng vuông góc với đường thẳng thứ 3 là BC)

11 tháng 2 2018

KO BT TAOCÒN FẢI ĐI HỎI CÚT

7 tháng 1 2021

a, Xét tam giác AKB và tam giác AKC có:

       AK chung

       AB = AC (gt)

       KB = KC ( K là trung điểm BC )

=> Tam giác AKB = tam giác AKC (c.c.c)

AB = AC (gt) => Tam giác ABC cân tại A có AK là đường trung tuyến ( K là trung điểm BC )

  => AK đồng thời là đường cao => AK vuông góc với BC.

b, Ta có: 

     AK vuông góc với BC (cmt)

     EC vuông góc với BC (gt)

=> AK song song với EC

c, Tam giác ABC cân tại A có AK vừa là đường trung tuyến vừa là đường cao => AK cũng là đường phân giác tam giác ABC 

  => Góc BAK = góc CAK = 1/2 góc BAC = 1/2*90 độ(tam giác ABC vuông tại A) = 30 độ

Lại có: AK song song với EC (cmt)  => Góc KAC = góc ECA ( so le trong)

Mà góc KAC = 30 độ => Góc ECA = 30 độ

Góc BAC + góc CAE = 180 độ ( kề bù)

 => Góc CAE = 180 độ - góc BAC = 180 độ - 90 độ = 90 độ

 Xét tam giác ACE có : Góc AEC + góc ECA + góc CAE = 180 độ ( định lí tổng 3 góc trong tam giác)

                                    Góc AEC + 30 độ + 90 độ = 180 độ 

                                   => Góc AEC = 180 độ - 90 độ - 30 độ = 60 độ

                                      Hay góc BEC = 60 độ

    Vậy Góc BEC = 60 độ

17 tháng 12 2017

a/ Ta có:  AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung

=>> tg AKB = tg AKC (c.c.c)

Ta có: AB = AC (gt) => tg ABC vuông cân tại A

mà K là trung điểm của BC

=>> AK là đường trung trực của tg ABC

=> AK\(\perp\) BC

b/ Ta có:  EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)

=>> EC // AK

c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A

=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ 

=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)

Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)

Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)

=> tg BCE cân tại C =>> CE = CB