A=5+52+53+.......+510
a) A có phải là hợp số hay không?
b) A có phải số chính phương hay không?
Mình đang cần gấp .Ai làm nhanh và đúng nhất mk tick nhak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 5+52+53+....+5100
A= ( 5+52)+( 53+54)+.......+(599+5100)
A= 5.(1+5)+ 53.(1+5)+....+599.(1+5)
A= 5.6 + 53.6 + .....+599.6
A= 6.( 5+53+.....+599)
A= 6.( 5+53+.....+599) chia hết cho 1, cho chính nó và cho 6 nên A là hợp số
Books have been one of my best friends which have supported me in every step of my life. And the one that I have the deepest impression on is “The miracle of the Namiya general store” .
The book is about three delinquents who were running away from their wrongdoings then accidentally found an old house and hid there for the night. The house turned out to be an abandoned general store where people could seek advice for their troubles by leaving a letter in the mailbox. Miracle happened when the time line somehow switched and letters from 30 years ago were delivered to them. Although none of them ever seriously considered others’ problems, something from the inside urged them to write responses to the troubled people, on behalf of Namiya – the old owner.
“ Miraculous” is exactly how I want to describe this book. No need for dogma lessons, it presents the value of kindness and compassion through different short stories that are linked perfectly together and leaves me hopeful about human nature. The past, present and future are combined flexibly, which creates many a surprise to me. How did the letters change people’s lives? Could the delinquents - whose past was covered by darkness – be awoken and open their hearts to heal the grieving souls? The story presents an open ending but I have got the answer of my own. To any book lovers especially those who have interest in soothing and touching stories, “The miracle of the Namiya general store” by Higashino Keigo is the one that should not be missed.
TƯỞNG GÌ KHÓ , THAM KHẢO NHA BẠN
Ta có :
\(A=2016.2016.....2016=2016^{2015}\)
\(B=2017.2017.....2017\)
\(B=2017^{2016}\)
\(B=\left(2016+1\right)^{2016}\)
\(B=2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)
Lại có :
\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)
\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)
\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)
Do đó :
\(A+B\) chia hết cho \(5\)
Vậy \(A+B\) chia hết cho \(5\)
Chúc bạn học tốt ~
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
a)
A=3 +3^2 +3^3+...+3^20
đổ 3 chia hết cho 3, không chia hết cho 9
lại có 3^2 chia hết cho 9, 3^3 chia hết cho 9,...,3^20 chia hết cho 9
=>A chia hết cho 3 không chia hết cho 9
=>A không là SCP
b)
B=11+11^2+11^3
T.tự B chia hết cho 11,không chia hết cho 121
=>B không là SCP
a/ tính 3A rùi trừ cho A đc bao nhiêu chia cho 2 ra A
b/ tính 11B trừ cho B chia 10
b) Ta có: A = \(10^{2012}+10^{2011}+10^{2010}+10^{2009}+8\) \(=\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+\left(.....0\right)+8=\left(.....8\right)\)
\(\Rightarrow\) A có tận cùng là 8
Mà số chính phương không có tận cùng là 8 nên A không phải số chính phương (đpcm)