Chứng minh :
f(x) = ( x+1)^ 2n + (x+2)^n -1 với x thuộc N* chia hết g(x) = x^2+ 3x+ 2
Mọi người giúp mình nhanh nhé mình đag gấp lắm, tks trc !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(38-3x⋮x\)mà \(3x⋮x\)
\(\Rightarrow\)\(38⋮x\)\(\Rightarrow\)\(x\inƯ\left(38\right)\in\left\{\pm1;\pm2;\pm9;\pm38\right\}\)
Vì \(x\inℕ\)\(\Rightarrow\)\(x\in\left\{1;2;9;38\right\}\)
Vậy \(x\in\left\{1;2;9;38\right\}\)
b) Ta có: \(3x+7=\left(3x-3\right)+10=3.\left(x-1\right)+10\)
- Để \(3x+7⋮x-1\)\(\Leftrightarrow\)\(3.\left(x-1\right)+10⋮x-1\)mà \(3.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(10⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(10\right)\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-5\) | \(5\) | \(-10\) | \(10\) |
\(x\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-4\) | \(6\) | \(-9\) | \(11\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
( Loại vì \(x\inℕ\))
Vậy \(x\in\left\{0;2;3;6;11\right\}\)
c) Ta có: \(2x+19=\left(2x+1\right)+18\)
- Để \(2x+19⋮2x+1\)\(\Leftrightarrow\)\(\left(2x+1\right)+18⋮2x+1\)mà \(2x+1⋮2x+1\)
\(\Rightarrow\)\(18⋮2x+1\)\(\Rightarrow\)\(2x+1\inƯ\left(18\right)\in\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Vì \(2x+1\)là lẻ \(\Rightarrow\)\(2x+1\in\left\{\pm1;\pm3;\pm9\right\}\)
- Ta có bảng giá trị:
\(2x+1\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-9\) | \(9\) |
\(x\) | \(-1\) | \(0\) | \(-2\) | \(1\) | \(-5\) | \(4\) |
\(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) |
( loại vì \(x\inℕ\))
Vậy \(x\in\left\{0;1;4\right\}\)
Bài 1:
a) \(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)x=14\) (1)
\(\Leftrightarrow2x^2-4x+8+x^3-2x^2+4x+\left(-3-x^2\right)x=14\)
\(\Leftrightarrow8+x^3-3x-x^3=17\)
\(\Leftrightarrow8-3x=14\)
\(\Leftrightarrow-3x=14-8\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2\right\}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\) (2)
\(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-\left(4x-15x^2+4\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\dfrac{43}{42}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{43}{42}\right\}\)
Bài 2: tự làm đi :)))))))))))
Bài 3:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
3. Ta có: n(2n - 3) - 2n(n+1) = 2n\(^{^2}\) - 3n - 2n\(^{^2}\) - 2n
= -5n
Mà -5n \(⋮\) 5
Vậy n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Vì một số khi chia cho 4 có thể dư 0;1;2;3 nên theo nguyên lí Đi rích lê thì trong 4 số tự nhiên liên tiếp có ít nhất một số chia hết cho 4, do đó tích trên chia hết cho 4, mà 4 chia hết cho 2 nên tích trên cũng chia hết cho2.
Tương tự với 3 nhé
+) CHC ( chia hết cho ) 2 :
Vì n ; n+1 ; n+2 và n+3 là 4 số liên tiếp
=> có 2 số chẵn
=> CHC 2 ( đpcm )
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
bạn là otaku