Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
2.(x-5)-3.(x-4)=-6+15.-3
\(2\left(x-5\right)-3\left(x-4\right)=-51\)
\(\left(2x-10\right)-\left(3x-12\right)=-51\)
\(2x-10-3x+12=-51\)
\(\left(2x-3x\right)+\left(-10+12\right)=-51\)
\(-x+2=-51\)
\(-x=-53\)
\(x=53\)
vậy x=53
chúc bạn học tốt like mình nha
6x+42y⋮31
=> 6x+11y+31y⋮31
Vì 31y⋮31⇒6x+11y⋮31
a, (x+3)(y+2) = 1
=> (x+3) \(\in\)Ư(1) = \(\left\{-1;1\right\}\)
Do (x+3)(y+2) là số dương
=> (x+3) và (y+2) cùng dấu
\(\Rightarrow\hept{\begin{cases}x+3=1\\y+2=1\end{cases}}\)hay \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}}\)
TH1:
\(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Vậy ............
b, (2x - 5)(y-6) = 17
=> \(\left(2x-5\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
2x - 5 | -17 | -1 | 1 | 17 |
x | -6 | 2 | 3 | 11 |
y - 6 | -1 | -17 | 17 | 1 |
y | 5 | -11 | 23 | 7 |
Vậy \(\left(x,y\right)\in\left\{\left(-6,5\right);\left(2,-11\right);\left(3,23\right);\left(11,7\right)\right\}\)
c, Tương tự câu b
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
Ta có: 6x+11y=6x+11y+31y=6x+42y=6.(x+7y)
Mà 6 và 31 là 2 số nguyên tố cùng nhau
⇒ x+7y⋮31
x+7y=6.(x+7y)=6x+42y=6x+11y+31y
Mà 6 và 31 là 2 số nguyên tố cùng nhau, 31y⋮31
⇒ 6x+11y⋮31
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
(X+1)(x.y-1)=5