K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

10^n - 9n - 1 chia hết cho 27 (*) 

Sử dụng phương pháp quy nạp. 

- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27. 

- Giả sử (*) đúng với n = k (thuộc N*), tức là: 
10^k - 9k - 1 chia hết cho 27 

- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là: 
10^(k+1) - 9(k+1) - 1 chia hết cho 27. 

Thật vậy: 
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k 

10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27. 

81 chia hết cho 27, nên 81k chia hết cho 27. 

Vậy (*) đúng với mọi n thuộc N* (đpcm).

20 tháng 10 2016

Bài 1:

a) 134ab chia hết cho 5 và 9

ta xét trường hợp chia hết cho 5 đầu tiên nên b=0;b=5

khi đó ta có:134a0 hoặc 134a5

sau đó ta xét trường hợp chia hết cho 9

ta có134a0 = 1+3+4+a+0 chia hết cho 9 nên a =1

thử lại:1+3+4+1+0 = 9 chia hết cho 9

tiếp theo ta xét số 134a5

ta có 134a5 = 1+3+4+a+5 chia hết cho 9 nên a =5

thử lại: 1+3+4+5+5=18 chia hết cho 9

đáp số:13415 và 13455

30 tháng 6 2018

a,\(10^n+18n-1\)

\(=99...9+18n\)(n-1 chữ số 9)

Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)

\(\Rightarrow999..9+18n⋮\left(3.9\right)\)

\(\Rightarrow10^n+18n-1⋮27\)

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

Giải:

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9,do đó hiệu của chúng chia hết cho 9.

Như vậy:2a-n \(⋮\)  9

và a-n \(⋮\)  9

=> (2a-n)-(a-n) \(⋮\)  9

Do đó : a \(⋮\) 9

Ta biết rằng một số và tổng các chữ số cửa nó có cùng số dư trong phép chia cho 9 , đó hiêuhh của chúng chia hết cho 9 . 

như vậy :2a - n xhia hết cho 9

và a-n chia hết cho 9

Bài 1 :

a)

Chứng minh chiều \("\Rightarrow"\) :

Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)

\(\Rightarrow99ab+ab+cd⋮99\)

Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )

Chứng minh chiều \("\Leftarrow"\) :

Ta có : \(ab+cd⋮99\)

\(\Rightarrow99ab+ab+cd⋮99\)

\(\Rightarrow100ab+cd⋮99\)

hay : \(abcd⋮99\) ( đpcm )

b) Ta có :

\(abcd=1000a+100b+10c+d\)

\(=100ab+cd\)

\(=200cd+cd=201cd\)

\(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )

c) Gọi số tự nhiên ba chữ số đó là \(aaa\)

Ta có : \(aaa=a.111=a.37.3⋮37\)

\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )

15 tháng 8 2019

mình sẽ vote cho 2 bạn đầu tiên . Thank you bạn

23 tháng 10 2015

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9