K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

 x =a/m =>. x = 2a/2m 
y =b/m => y = 2b/2m 
z = (a+b)/2m 
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1) 
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2) 
Suy ra: 
2a < a +b < 2b 
Suy ra (chia 2 vế cho 2m) : 
2a/2m < (a +b)/2m < 2b 
R út gọn ta được : x < z <y

7 tháng 6 2015

do x<y =>a/m<b/m=>a<b

ta có:

x=a/m=2a/2m

y=b/m=2b/2m

do a<b=>a+a/2m<a+b/2m

<=>2a/2m<a+b/2m

<=>x<z (1)

do a<b=>a+b/2m<b+b/2m

<=>a+b/2m<2b/2m

<=>z<y (2)

từ (1) và (2)=>ĐPCM

 

27 tháng 8 2015

C1:

Ta có:  \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)

Vì x<y nên a<b

Vì 2a< a+b< 2b

=> \(\frac{2a}{2m}

27 tháng 8 2015

bạn vào câu hỏi tương tự đó

17 tháng 8 2015

m>0 và x<y nên a<b                                                                                                                                       Do đó \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}

17 tháng 8 2015

ta có \(\frac{a}{m}

31 tháng 7 2017

x=a/m;y=b/m;x<y nên a<b

nên a+a<a+b

nên 2a/2m<a+b

nên x<z

tương tự có z<y

do đó x<z<y

12 tháng 6 2017

theo đề bài ta có :

\(x=\frac{a}{m}\)\(y=\frac{b}{m}\)( a,b,m \(\in\)Z , m > 0 )

vì x < y \(\Leftrightarrow\)\(\frac{a}{m}< \frac{b}{m}\)

\(\Rightarrow a< b\Rightarrow a+a< b+a\Rightarrow2a< a+b\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\left(1\right)\)

Vì a < b \(\Rightarrow\)a + b < b + c

\(\Rightarrow a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(x< z< y\)

12 tháng 6 2017

Theo bài ra ta có \(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)

Từ x < y, ta lại có \(\frac{a}{2m}< \frac{b}{2m}\Rightarrow\frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\Rightarrow z< y\) (2)

Từ (1) và (2) suy ra đpcm