\(\dfrac{2^3+2^4+2^5}{7^2}\)
\(\dfrac{2^3+2^4+2^5+2^6}{15^2}\)
Giúp mình trả lời với giải thích cách làm nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(=\dfrac{1+4}{5}+\dfrac{5+1+3}{9}=1+1=2\)
b, \(=\dfrac{1+4+2}{3}+\dfrac{1+2+5}{6}=\dfrac{6}{3}+\dfrac{8}{6}=2+\dfrac{4}{3}=\dfrac{6+4}{3}=\dfrac{10}{3}\)
Câu 1:
\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)
\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)
\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)
\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)
\(\Leftrightarrow50x-16=0\)
\(\Leftrightarrow50x=16\)
\(\Leftrightarrow x=\dfrac{8}{25}\)
Câu 2 :
\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)
<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)
<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)
<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x
<=> 11x+27 = 26x -5
<=> ( 26x - 5 ) - ( 11x + 27 ) = 0
<=> 15x - 32 = 0
<=> 15x = 32
<=> x = \(\dfrac{32}{15}\)
a) Ta có: \(7\cdot\dfrac{3}{14}-\dfrac{1}{14}\)
\(=\dfrac{3}{2}-\dfrac{1}{14}\)
\(=\dfrac{21}{14}-\dfrac{1}{14}\)
\(=\dfrac{10}{7}\)
b) Ta có: \(\dfrac{3}{2}+\dfrac{7}{4}:\dfrac{5}{2}\)
\(=\dfrac{3}{2}+\dfrac{7}{4}\cdot\dfrac{2}{5}\)
\(=\dfrac{3}{2}+\dfrac{7}{10}\)
\(=\dfrac{15}{10}+\dfrac{7}{10}=\dfrac{22}{10}=\dfrac{11}{5}\)
Lời giải:
\(7\times \frac{3}{14}-\frac{1}{14}=\frac{7\times 3}{14}-\frac{1}{14}=\frac{21}{14}-\frac{1}{14}=\frac{21-1}{14}=\frac{20}{14}=\frac{2\times 10}{2\times 7}=\frac{10}{7}\)
\(\frac{3}{2}+\frac{7}{4}:\frac{5}{2}=\frac{3}{2}+\frac{7}{4}\times \frac{2}{5}=\frac{3}{2}+\frac{7\times 2}{4\times 5}=\frac{3}{2}+\frac{7\times 2}{2\times 2\times 5}\)
\(=\frac{3}{2}+\frac{7}{2\times 5}=\frac{3\times 5}{2\times 5}+\frac{7}{2\times 5}=\frac{3\times 5+7}{2\times 5}=\frac{22}{2\times 5}=\frac{2\times 11}{2\times 5}=\frac{11}{5}\)
M=\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{17}{8^2.9^2}+\dfrac{19}{9^2.10^2}\)
=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{17}{64.81}+\dfrac{19}{81.100}\)
=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{81}+\dfrac{1}{81}-\dfrac{1}{100}\)
=1-\(\dfrac{1}{100}\)=\(\dfrac{99}{100}\)<\(\dfrac{100}{100}=1\)
4/3 + 3/3 = 7/3
5/2 x 4 = 10
2 - 7/8 = 16/8 - 7/8 = 9/8
5 x 7/5 = 7
5/6 x 7/2= 35/12
4/3 + 3/3 = 7/3
5/2 x 4 = 10
2 - 7/8 = 16/8 - 7/8 = 9/8
5 x 7/5 = 7
5/6 x 7/2= 35/12
g)\(=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right).\dfrac{7}{3}+\left(\dfrac{3}{5}+-\dfrac{1}{4}\right).\dfrac{7}{3}\)
\(=\left(-\dfrac{3}{4}+-\dfrac{1}{4}+\dfrac{2}{5}+\dfrac{3}{5}\right).\dfrac{7}{3}\)
\(=\left(-1+1\right).\dfrac{7}{3}=0.\dfrac{7}{3}=0\)
f) \(\dfrac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\)
\(=\dfrac{3^3.5^3+5.5^2.3^2-5^3}{3^3.6^3+6.6^2.3^2-6^3}\)
\(=\dfrac{5^3.\left(3^3+3^2-1\right)}{6^3.\left(3^3+3^2-1\right)}\)
\(=\dfrac{5^3}{6^3}\)
\(=\dfrac{125}{216}\)
`3/4 + 5/6 = 9/12 + 10/12 = 19/12`
`1/2 + 7/12 = 6/12 + 7/12 = 13/12`
`2/3 xx 3/4 = 2/4 = 1/2`
`7/4 : 2 = 7/4 xx 1/2 = 7/8`
\(a,\dfrac{3}{4}+\dfrac{5}{6}=\dfrac{18}{24}+\dfrac{20}{24}=\dfrac{38}{24}=\dfrac{19}{12}\)
\(b,\dfrac{1}{2}+\dfrac{7}{12}=\dfrac{6}{12}+\dfrac{7}{12}=\dfrac{13}{12}\)
\(c,\dfrac{2}{3}x\dfrac{3}{4}=\dfrac{2}{4}\)
\(d,\dfrac{7}{4}:2=\dfrac{7}{4}x\dfrac{1}{2}=\dfrac{7}{8}\)
\(\dfrac{2^3+2^4+2^5}{7^2}=\dfrac{2^3\left(1+2+2^2\right)}{7^2}=\dfrac{8}{7}\)
\(\dfrac{2^3+2^4+2^5+2^6}{15^2}=\dfrac{2^3\left(1+2+2^2+2^3\right)}{15^2}=\dfrac{8}{15}\)