ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
fân tích đa thức thành ntử:
a(b+c)2(b-c)+b(+a)2(c-a)+c(a+b)2(a-b)
Gọi P là biểu thức phải phân tích, ta có P = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)] = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a) = [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)] = (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2] = (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2) = (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)] = (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc) = (b - c)(c - a)(ac - b^2 + a^2 - bc) = (b - c)(c - a)[(a^2 - b^2) + (ac - bc)] = (b - c)(c - a)[(a - b)(a + b) + c(a - b)] = (b - c)(c - a)(a - b)(a + b + c) = (a - b)(b - c)(c - a)(a + b + c). Vậy P = (a - b)(b - c)(c - a)(a + b + c).
Phân Tích Đa Thức thành nhân tử 3abc+a^2(a-b-c)+b^2(b-a-c)+c^2(c-a-b)-c(b-c)(a-c)
phân tích đa thức thành nhân tử:a(b+c)(b^2-c^2)+b(a+c)(c^2-a^2)+c(a+b)(a^2-b^2)
Phân tích đa thức sau thành nhân tử a(b+c)^2(b-c) +b(c+a)^2(c-a) +c(a+b)^2(a-b)
Mình không biết
ko bt thì ko nói nha mình đang cần gấp lém xin đừng trêu
phân tích đa thức thành nhân tử a(a+b)^2(a-b)+b(b+c)^2(b-c)+c(c+a)^2(c-a)
phân tích đa thức thành nhân tử a(b+c)(b^2-c^2)+b(a+c)(c^2-a^2)+c(a+b)(a-b)
phân tích đa thức thành nhân tử
a*(b+c)^2*(b-c)+b*(c+a)^2*(c-a)+c*(a+b)^2*(a-b)
phân tích đa thức sau thành nhân tử (a+b)^2(a-b)+(b+c)^2(b-c)+(c+a)^2(c-a)
tk mình đi mình giải cho
Phân tích đa thức thành nhân tử
a(b - c)^2 + b(c -a)^2 + c(a - b)^2 - a^3 - b^3 – c^3 + 4abc
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
Gọi P là biểu thức phải phân tích, ta có
P = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)]
= a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a)
= [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)]
= (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2]
= (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2)
= (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)]
= (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc)
= (b - c)(c - a)(ac - b^2 + a^2 - bc)
= (b - c)(c - a)[(a^2 - b^2) + (ac - bc)]
= (b - c)(c - a)[(a - b)(a + b) + c(a - b)]
= (b - c)(c - a)(a - b)(a + b + c)
= (a - b)(b - c)(c - a)(a + b + c).
Vậy P = (a - b)(b - c)(c - a)(a + b + c).