cho tam giác ABC . điểm D thuộc BC kẻ DE song song với AC [ E thuộc AB] kẻ DF song song với AB [ F thuộc AC] gọi i là trung điểm của EF. chứng minh rằng i là trung diểm của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Ta có: AB // DF hay AE // DF
=> góc AEI = góc IFD (slt)
Ta có: AE // DE => góc EAI = góc IDF (slt)
Tổng ba góc trong tam giác = 1800
=> 1800 - AEI - EAI = 1800 - IFD - IDF
hay góc AIE = góc DIF (*)
Ta có: góc AEI = góc IFD (cmt) (**)
EI = FI (I là trung điểm EF) (***)
Từ (*),(**),(***) => tam giác AEI = tam giác DFI
=> AI = DI (2 cạnh tương ứng) (1)
Ta có: góc AIE = góc DIF (chứng minh trên)
Mà góc AIE + góc AIF = 1800 (kề bù)
=> góc DIF + góc AIF = 1800
hay AID = 1800
hay A,I,D thẳng hàng với nhau (2)
Từ (1),(2) => I là trung điểm của AD
-> Ta có đpcm.
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Xét tứ giác AFDE có
DE//AF
AE//DF
Do đó: AFDE là hình bình hành
Suy ra: hai đường chéo AD và FE cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của FE
hay F và E đối xứng nhau qua I
Vì D là trung điểm BC mà DE//AC nên E là trung điểm AB
Do đó DE là đường trung bình tam giác ABC
Vậy \(DE=\dfrac{1}{2}AC\) hay \(AC=2DE\)