K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z 
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4 
thay vào vế trái ta có 
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c = 
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c) 
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c) 

Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2 
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6 
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có: 
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z 
cách này tuy biến đổi dài nhưng dễ hiểu) 
------------ 
Cách khác: 
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3 
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3 
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3 
- - - 
Côsi cho 3 số: 
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) 
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*) 
Côsi cho 3 số: 
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*) 

Lấy (1*) *(2*) ta có: 
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9 

=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4 
thay vào P ta có: 
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z 

12 tháng 7 2018

Bạn ơi vì sao lại nhân với 9/4 mình tưởng chỉ nhân với 3/4 thôi chứ nhỉ

21 tháng 7 2020

a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)

Dấu "=" xảy ra <=> a=b

Áp dụng BĐT (*) vào bài toán ta có:

\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Tiếp tục áp dụng BĐT (*) ta có:

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

21 tháng 7 2020

b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:

\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)

Cộng theo vế 3 BĐT ta có:

\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra <=> a=b=c

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

30 tháng 4 2020

mình nghĩ phải sửa dấu thành \(\ge\)

30 tháng 4 2020

BĐT cần chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)

Cộng lại theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Dấu "=" xảy ra khi a = b = c = 1

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

26 tháng 12 2016

a) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (1)

\(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) (2)

Cộng vế vs vế (1);(2) ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{4}{x+y}+\frac{4}{y+z}\)

Mà: \(\frac{4}{x+y}+\frac{4}{y+z}=4\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\ge4\left(\frac{4}{x+2y+z}\right)=\frac{16}{x+2y+z}\)

=> \(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)

=> \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

=> \(\frac{y}{x+2y+z}\le\frac{y}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (3)

Tương tự ta cũng có:

\(\frac{x}{2x+y+z}\le\frac{x}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (4)

\(\frac{z}{x+y+2z}\le\frac{z}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (5)

Từ (3);(4);(5) suy ra:

\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+2+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+2\right)\)

Vì: \(x,y,z>0\) nên áp dụng bđt cô-si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2;\frac{y}{z}+\frac{z}{y}\ge2;\frac{x}{z}+\frac{z}{x}\ge2\)

Do đó:

\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(6+2+2+2\right)=\frac{1}{16}\cdot12=\frac{3}{4}\)

b)

Vì: \(ab+bc+ca\le\\ a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

=> \(3\left(ab+bc+ca\right)\le0\)

=> \(ab+bc+ca\le0\)

10 tháng 12 2017

bạn ơi hình như có chút sai đề