K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

mình nghĩ phải sửa dấu thành \(\ge\)

30 tháng 4 2020

BĐT cần chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)

Cộng lại theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Dấu "=" xảy ra khi a = b = c = 1

26 tháng 3 2019

cậu thử biến đổi mẫu của phấn số cho thành mẩu của từng phân số cần cm (3 lần áp dụng tính chất dãy tỉ số bằng nhau nhé)