Tính:
\(-\dfrac{3}{7}-\dfrac{4}{7}:x=-2\) (giải rõ ràng hộ mình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{7}{12}+\dfrac{3}{4}\times\dfrac{2}{9}=\dfrac{7}{12}+\dfrac{1}{6}=\dfrac{7}{12}+\dfrac{2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(b,\dfrac{8}{9}-\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{8}{9}-\dfrac{4}{15}\times\dfrac{5}{2}=\dfrac{8}{9}-\dfrac{2}{3}=\dfrac{8}{9}-\dfrac{6}{9}=\dfrac{2}{9}\)
a \(\dfrac{6}{15}+\dfrac{11}{15}=\dfrac{17}{15}\)
b \(\dfrac{22}{77}-\dfrac{14}{77}=\dfrac{8}{77}\)
c \(\dfrac{11}{13}\times\dfrac{26}{31}=11\times\dfrac{2}{31}=\dfrac{22}{31}\)
d \(\dfrac{1}{2}\times3\times\dfrac{2}{5}=\dfrac{3}{5}\)
dấu . là nhân hay là phần ngăn cách ở hàng phần nghìn thế
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
a) \(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{2}{12}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=\dfrac{0}{6}=0\)
b) \(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\dfrac{8}{20}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4-2-1}{10}=\dfrac{1}{10}\)
\(C=\dfrac{-5}{7}+\dfrac{-2}{7}+\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{-1}{5}=-1+1-\dfrac{1}{5}=\dfrac{-1}{5}\)
a) x=24/35 -2/7
x=14/35
b) x=7/8+5/6
x=41/24
c) x-11/5=3/5
x=11/5+3/5
x=14/5
tick cho mình nhé
vừa chị làm rồi em ko hiểu à?
Chị ơi, hơi bị tắt quá nên khó hiểu ạ!!!