Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
a/ Xét tam giác AMB và tam giac NMC, ta có:
AM=MN
BM=MC
Góc AMB=góc NMC
Suy ra: tam giác AMB = tam giác NMC (c.g.c)
b/ góc ABC=góc BCN (góc tuong ứng, 2 tam giac bằng nhau)
Ta có: AB // CN (do góc ABM = MCN, ở vị trí so le trong)
Mà CD vuông góc AB. Nên CD vuông góc NC (tính chất đường thẳng song song và vuông góc)
Vậy góc DCN = 900
c/ Xét tam giác BIA, Ta có:
BH vuông góc AI
HI =HA (gt).
Nên Tam giác BIA là tam giác cân tại B
Mà AB = CN (cmt).
Vậy BI = CN