K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

A B C N M D H I

a, xét tam giác AMB và tam giác NMC có : 

BM = MC do M là trung điểm của BC (gt)

AM = NM do M là trung điểm của AN (Gt)

góc AMB = góc NMC (đối đỉnh)

=> tam giác AMB = tam giác NMC (c-g-c)

b,  tam giác AMB = tam giác NMC (câu a)

=> góc ABM = góc MCN (đn)

c, tam giác AMB = tam giác NMC (câu a) 

=> BA = CN (đn)       (1)

xét tam giác BAH và tam giác BIH có : BH chung

góc BHA = góc BHI = 90 (gt) 

HI = HA (Gt)

=> tam giác BAH = tam giác BIH (2cgv)

=> BI = BA (đn)     (2)

(1)(2) => BI = CN

a) Xét ∆ABM và ∆CMN ta có : 

AM = MN 

BM = MC 

AMB = CMN ( đối đỉnh) 

=> ∆ABM = ∆CMN (c.g.c)

b) Vì ∆ABM = ∆CMN (cmt) 

=> ABM = NCM 

Mà 2 góc này ở vị trí so le trong 

=> AB //NC 

=> DB // NC 

Ta có : BDC + DCN = 180° ( kề bù) 

=> DCN = 90° 

c) Xét ∆ vuông ABH và ∆vuông IHB ta có : 

AH = HI 

BH chung

=> ∆ABH = ∆IHB ( 2 cạnh góc vuông) 

=> BA = BI 

Mà AB = CN (cmt)

=> BI = CN ( cùng bằng BA)

29 tháng 11 2015

mình rất cần giúp câu c , cảm ơn rất nhìu

 

29 tháng 11 2015

Hình vẽ đâu bạn tick mk thì mk làm cho 

a) Xét ΔAMB và ΔNMC có 

MA=MN(gt)

\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔNMC(c-g-c)

b) Ta có: ΔAMB=ΔNMC(cmt)

nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)

hay \(\widehat{ABC}=\widehat{BCN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)

mà CD⊥AB(gt)

nên CD⊥CN

hay \(\widehat{DCN}=90^0\)

c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có 

BH chung

HA=HI(gt)

Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)

Suy ra: AB=IB(hai cạnh tương ứng)

mà AB=CN(ΔAMB=ΔNMC)

nên IB=CN(đpcm)

13 tháng 11 2019

Giúp với mọi người ơi

Mk cho link câu hỏi tương tự

a: Xét ΔAMB và ΔNMC có

MA=MN

góc AMB=góc NMC

MB=MC

Do đó: ΔAMB=ΔNMC

b: Xét ΔBAI có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAI cân tại B

=>BA=BI=CN

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

24 tháng 2 2020

a, xét tam giác AMB và tam giác NMC có : 

AM = MN do N là trđ của AM (gt)

MB = MC do M là trđ của BC (Gt)

góc BMN = góc CMA (đối đỉnh)

=> tam giác AMB = tam giác NMC (c-g-c)