Tìm tất cả các tam giác vuông có số đo các cạnh là số nguyên và hai lần số đo diện tích và bằng ba lần số đo chu vi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi các cạnh của tam giác vuông là x,y,z trong đó z là cạnh huyền
theo đề ra ta có xy=2(x+y+z) (1) và x2+y2=z2
từ x2+y2=z2 => z2=(x+y)2-2xy thay vào (1) ta có z2=(x+y)2-4(x+y+z)
z2+4z=(x+y)2-4(x+y)
z2+4z+4=(x+y)2-4(x+y)+4
(z+2)2=(x+y-2)2
=> z+2=x+y-2
=> z=x+y-4 thay vào (1) ta được xy=2(x+y+x+y-4)
xy=4x+4y-8
xy=-4x-4y=-8
x(y-4)-4(y-4)-16=-8
(x-4)(y-4)=8
(x-4)(y-4)=1.8=2.4
từ đó tìm được (x;y;z)=(5;12;13);(12;5;13);(6;8;10);(8;6;10)
THAM khảo
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử \(1\le a\le b\le c\)
Ta có hệ phương trình \(\hept{\begin{cases}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{cases}}\)
Từ (1) \(c^2=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\)( theo (2))
\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)=c^2+4c\)
\(\left(a+b-2\right)^2=\left(c+2\right)^2\)
\(c=a+b-4\)
Thay vào (2) ta được
\(ab=2\left(a+b+a+b-4\right)\)
\(ab-4a-4b+8=0\)
\(\Leftrightarrow b\left(a-4\right)-4\left(a-4\right)=8\)
\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)
Phân tích 8 = 1.8 = 2.4 nên ta có:
\(\hept{\begin{cases}a=5\\b=12\end{cases}}\)hoặc \(\hept{\begin{cases}a=6\\b=8\end{cases}}\)
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)
CRE: inter
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử 1≤a≤b<c1≤a≤b<c
Ta có hệ phương trình : {a2+b2=c2(1)ab=2(a+b+c)(2){a2+b2=c2(1)ab=2(a+b+c)(2)
Từ (1) c2=(a+b)2−2abc2=(a+b)2−2ab
⇔c2=(a+b)2−4(a+b+c)⇔c2=(a+b)2−4(a+b+c) (theo (2))
⇔(a+b)2−4(a+b)=c2+4c⇔(a+b)2−4(a+b)=c2+4c
(a+b−2)2=(c+2)2(a+b−2)2=(c+2)2
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab −4a−4b + 8 = 0
⇔⇔ b(a −4) −4(a−4) = 8
⇔⇔(a −4)(b−4) = 8
Phân tích 8 = 1.8 = 2.4 nên ta có:
{a=5b=12{a=5b=12 hoac {a=6b=8{a=6b=8
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử
Ta có hệ phương trình :
Từ (1)
theo (2)]
⇔(a+b)^2−4(a+b)=c^2+4c
c = a + b − 4.
Thay vào (2) ta được: ab = 2(a + b + a + b − 4)
ab − 4a−4b + 8 = 0
⇔ b(a −4) − 4(a−4) = 8
⇔(a −4)(b−4) = 8
Phân tích 8 = 1.8 = 2.4 nên ta có:
hoặc
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)
Gọi ssos đo 3 cạnh của tam giác đó là a,b,c (c là cạnh huyền)
Theo đề ta có: \(\hept{\begin{cases}c^2=a^2+b^2^{\left(1\right)}\\ab=2\left(a+b+c\right)\end{cases}}\)
Từ (1) => \(c^2=\left(a+b\right)^2-2ab=\left(a+b\right)^2-4\left(a+b+c\right)\)
\(\Rightarrow c^2=a^2+b^2+2ab-4a-4b-4c\)
\(\Leftrightarrow c^2+4c+4=a^2+b^2+2ab-4a-4b+4\)
\(\Leftrightarrow\left(c+2\right)^2=\left(a+b-2\right)^2\)
Do \(a,b,c\inℕ^∗\)
\(\Rightarrow c+2=a+b-2\Leftrightarrow c=a+b-4\)
Thay c = a + b - 4 vào (1) ta có:
\(\left(a+b-4\right)^2=a^2+b^2\Leftrightarrow\left(b-4\right)\left(a-4\right)=8\)
Do \(a,b\inℕ^∗\Rightarrow a-4;b-4\inƯ\left(8\right)\)
Lại có: a-4, b-4 > -4
\(\Rightarrow a-4;b-4\in\left\{1;2;4;8\right\}\)
Đến đây các bạn lập bảng là ok
KL: \(\left(a,b,c\right)=\left(5,12,13\right)\)
\(=\left(12,5,13\right)\)
\(=\left(6,8,10\right)\)
\(=\left(8,6,10\right)\)
Chúc các bạn học tốt !!!
Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :
x2+y2=z2(1)x2+y2=z2(1)
xy=2(x+y+z)(2)xy=2(x+y+z)(2)
Từ (1)(1) ta có :
z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4
⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2
⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)
Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :
(x−4)(y−4)=8(x−4)(y−4)=8
⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4
⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8x=6;y=8
lalallalalallalalla mij k djd jfjfj fiiddi ididi iddiidid didiididid idid idid idi didi dit con me chung may cho chet vois ogs